شبیه سازی رفتار خوردگی حفره‌دار شدن فولاد زنگ نزن CUSTOM 450 با نرم افزار کامسول و روش همبستگی تصاویر دیجیتال

نوع مقاله : مقاله مکانیک

نویسندگان

1 دانشجوی دکترای مکانیک دانشگاه زنجان

2 university of zanjan

3 زنجان*مهندسی مکانیک

4 دانشکده شیمی، دانشگاه زنجان

چکیده

پره‌های کمپرسور توربین گازی از جنس CUSTOM 450 در محیط‌های کلریدی دچار خوردگی حفره‌‌دار شدن می‌شوند. ایجاد حفره و ترک در پره و رشد آن‌ها منجر به واماندگی و شکست می‌گردد. در این مقاله به پیش‌بینی رفتار خوردگی حفره‌‌دار شدن در آلیاژ مورد استفاده در پره‌های ردیف اول کمپرسور توربین گازی 6-GEF پرداخته می‌شود. در این راستا، در بخش آزمایشگاهی ابتدا نمونه‌ی خمش دو نقطه‌ای تحت پتانسیل‌های مختلف در محلول 3/5 درصد وزنی سدیم کلرید قرار می‌گیرد تا در محل خمش بیشینه دچار خوردگی حفره‌‌دار شدن و در نهایت واماندگی شود. با توجه به آزمون‌های مختلف پتانسیو استاتیک رابطه‌ای برای پیش‌بینی زمان حفره‌دار شدن و تخمین عمر نمونه‌ی تحت تنش در پتانسیل‌های مختلف ارائه می‌شود. در نهایت با بهره‌گیری از روش همبستگی تصاویر دیجیتال، کرنش در حفره‌های رشد یافته، محاسبه شده است. در بخش عددی، با شبیه‌سازی حفره‌های رشد یافته در بخش آزمایشگاهی در نرم‌افزار کامسول، توزیع کرنش اطراف حفره‌ها به‌دست می‌آید. محل کرنش‌ بیشینه‌ی موضعی حاصل از شبیه‌سازی در کامسول و روش همبستگی تصاویر دیجیتال مطابقت خوبی با جهت رشد حفره‌ی خوردگی در آزمایش‌های الکتروشیمیایی دارد. بدین ترتیب بدون نیاز به آزمایش‌های تجربی، می‌توان جهت رشد حفره را شبیه‌سازی کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Simulation of pitting corrosion behavior of CUSTOM 450 stainless steel by COMSOL software and DIC method

نویسندگان [English]

  • Yousef Mollapour 1
  • Omid Pedram 2
  • Esmaeil Poursaeidi 3
  • Hassan Shayani-jam 4
1 Ph.D student of University of Zanjan
2 university of zanjan
3 niversity of zanjan
4 university of zanjan
چکیده [English]

The CUSTOM 450 gas turbine compressor blades are corroded in chlorine environments. The initiation and growth of pits and cracks lead to failure. In this paper, prediction of the pitting corrosion behavior of the alloy is studied. In this regard, in the laboratory section, two-point bending specimen is first subjected to different potentials in a 3.5 wt.% sodium chloride solution to cause pitting corrosion and finally leads to failure at the maximum bending region. According to different potentiostatic tests, an equation is proposed to predict the pitting and life time of stressed sample at different potentials. In the numerical section, the strain in the grown pits is calculated by using digital image correlation method and also the COMSOL Multiphysics software. The location of the localized maximum strain obtained from these two methods is in good agreement with growth of the corrosion pits in the electrochemical experiments. Thus, without needs of experiments, the growth direction of the pit can be simulated.

کلیدواژه‌ها [English]

  • CUSTOM 450 alloy
  • pitting corrosion
  • local strain
  • life estimate
 
]1[ بهنام عاقبتی و یاسر شریفی، "تأثیر خوردگی حفره­ای در برآورد ظرفیت باربری ورق‌های فولادی تحت تنش فشاری تک‌محوره"، نشریه مدل سازی در مهندسی، دوره 16، شماره 55، زمستان 1397، صفحه 19-19.
]2[ سیدابراهیم موسوی ترشیزی و علی جهانگیری، "تحلیل خرابی پره‌های ثابت کمپرسور در یک توربین گاز"، نشریه مدل سازی در مهندسی، دوره 16، شماره 54، زمستان 1397، صفحه 360-351.
]3[ مهدی محمدی، سیدمرتضی بیاره و محمد کوثری، "مدل سازی عملکرد توربین های گازی سه محوره محرک کمپرسور ایستگاههای تقویت فشار گاز از دیدگاه اکسرژی"، نشریه مدل سازی در مهندسی، دوره 17، شماره 56، زمستان 1398، صفحه 4-4.
[4] E. Poursaeidi, A. M. Niaei, M. Arablu,  and A. Salarvand "Experimental investigation on erosion performance and wear factors of custom 450 steel as the first row blade material of an axial compressor", International Journal of Surface Science and Engineering, Vol. 11, No. 2, February 2017, pp. 85-99.
[5] E. Poursaeidi, A. M. Niaei, M. Lashgari, K. Torkashvand, "Experimental studies of erosion and corrosion interaction in an axial compressor first stage rotating blade material", Applied Physics A, Vol. 124, No. 9, May 2018, pp. 629.
[6] D. Rivas, F. Caleyo, A. Valor, and J. M. Hallen, "Extreme Value Analysis Applied to Pitting Corrosion Experiments in Low Carbon Steel: Comparison of block maxima and peak over threshold approaches"; Corrosion Science, Vol. 50, No. 11, May 2008, pp. 3193-3204.
[7] H. Ma, Z. Liu, C. Du, H. Wang, C. Li, and X. Li, "Effect of cathodic potentials on the SCC behavior of E690 steel in simulated seawater", Materials Science and Engineering: A, Vol. 642, No. 2, May 2015, pp. 22-31.
[8] J. Orlikowski, A. Jazdzewska, R. Mazur, and K. Darowicki, "Determination of pitting corrosion stage of stainless steel by galvanodynamic impedance spectroscopy", Electrochimica Acta, Vol. 253, No. 1, May 2017, pp. 403-412.
[9] S. A. Mohammed, Y. Hua, R. Barker, and A. Neville, "Investigating pitting in X65 carbon steel using potentiostatic polarisation", Applied Surface Science, Vol. 423, No. 1, May 2017, pp. 25-32.
[10] Z. S. Asadi, and R. E. Melchers, "Clustering of corrosion pit depths for buried cast iron pipes", Corrosion Science, Vol. 140, No. 3, May 2018, pp. 92-98.
[11] H. Tian, X. Wang, Z. Cui, Q. Lu, L. Wang, L. Lei, Y. Li, and D. Zhang, "Electrochemical corrosion, hydrogen permeation and stress corrosion cracking behavior of E690 steel in thiosulfate-containing artificial seawater", Corrosion Science, Vol. 144, No. 3, May 2018, pp. 145-162.
[12] M. R. Wenman, K. R. Trethewey, S. Jarman, and P. R. Chared-Tuckey,"A finite-element computational model of chloride-induced transgranular stress-corrosion cracking of austenitic stainless steel", Acta Materialia, Vol. 56, No. 16, May 2008, pp. 4125-4136.
[13] I. Scheider, M. Pfuff, and W. Dietzel., "Simulation of hydrogen assisted stress corrosion cracking using the cohesive model", Engineering Fracture Mechanics, Vol. 75, No. 15, May 2008, pp. 4283-4291.
[14] R. Falkenberg, W. Brocks, W. Dietzel, and I. Schneider, "Simulation of stress-corrosion cracking by the cohesive model", Key Engineering Materials Trans Tech Publications, Vol. 417, No. 4, May 2010, pp. 329-332.
[15] S. Salleh, “Modelling pitting corrosion in carbon steel materials”, The University of Manchester (United Kingdom, 2013.
[16] V. Vijayaraghavan, A. Garg, L. Gao, and R. Vijayaraghavan, "Finite element based physical chemical modeling of corrosion in magnesium alloys", Metals, Vol. 7, No. 3, May 2017, pp. 83.
[17] O., Pedram, and E. Poursaeidi, "Total life estimation of a compressor blade with corrosion pitting, SCC and fatigue cracking", Journal of Failure Analysis and Prevention, Vol. 18, No. 2, 2018, pp. 423-434.
[18] O., Pedram, and E. Poursaeidi. "Pitting corrosion as the main cause of crack initiation in a compressor blade", 3rd International Conference on Mechanical and Aerospace Engineering, Tehran, Imam Khomeini International University - Iranian Association of Thermal and Refrigeration Engineering, 2018.
[19] O., Pedram, and E. Poursaeidi, "An outrun competition of corrosion fatigue and stress corrosion cracking on crack initiation in a compressor blade", International Journal of Engineering, Vol. 27, No. 5, 2014, pp. 785-792.
[20] Y. Mollapour, O. Pedram, E. Poursaeidi, and R. Khamedi, "Numerical Investigation of Pitting Corrosion of CUSTOM 450 Alloy in Acetic Acid and Sodium Acetate", 27th Annual International Conference Of Iranian Society Of Mechanical Engineering And 7th Conference On Thermal Power Plants (ISME 2019), Tarbiat Modares University - University Of Tehran, Tehran, 2019 (In Persian).
[21] O., Pedram, Y., Mollapour, H., Shayani-jam, E., Poursaeidi, and R., Khamedi, "Pitting Corrosion Behavior of CUSTOM 450 Stainless Steel Using Electrochemical Characterization", Metals and Materials International, 2020, pp. 1-11.
[22] E. Poursaiedi, and A. Salarvand, "Effect of coating surface finishing on fatigue behavior of C450 steel CAPVD coated with (Ti, Cr) N", Journal of Materials Engineering and Performance, Vol. 25, No. 8, 2016, pp. 3448-3455.
[23] D. Winter, "Optische Verschiebungsmessung nach dem Objektrasterprinzip mit Hilfe eines flächenorientierten Ansatzes", na, 1993.
[24] Technical datasheet, CUSTOM 450 Stainless, CARPENTER, 2009, pp. 1-12.