مشخصه یابی قرنیه انسان با بکار بردن مدل ناهمسانگرد تقویت شده با فیبر توسط روش اجزاءمحدود معکوس

نوع مقاله : مقاله مکانیک

نویسندگان

1 گروه مهندسی پزشکی، واحد خمینی شهر، دانشگاه آزاد اسلامی، خمینی شهر، اصفهان، ایران

2 گروه مکانیک، واحد خمینی شهر، دانشگاه آزاد اسلامی، خمینی شهر، اصفهان، ایران

3 بنیان گذار و مشاور، مرکز تحقیقات بیمارستان چشم نگاه، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران

چکیده

هدف از این مطالعه، پیش بینی پاسخ گذار بافت قرنیه انسانی با استفاده از مدل ساختاری متناسب با رفتار بیومکانیکی آن می باشد. برای این منظور تغییرشکل بافت قرنیه انسان توسط آزمون کشش تک‌محوره، به ازای سه نرخ کرنش متفاوت (سرعت های بارگذاری 1، 5 و 10 میلی‌متر بر دقیقه)، بررسی شد. در این مطالعه تعداد 8 پارامتر مواد مدل ساختاری ناهمسانگرد تقویت شده با فیبر هایپرویسکوالاستیک، با زوایای مختلف فیبرها با استفاده از کوپل اجزاء محدود-بهینه‌سازی و داده‌های آزمایشگاهی بدست آمد. این مدل پراکندگی فیبرها را به همراه تغییر جهت آنها در طول مدت بارگذاری و همچنین رفتار غیر خطی تغییر شکل محدود بافت را به همراه خاصیت ویسکوالاستیک ذاتی ماتریس زمینه در نظر می‌گیرد. با افزایش و کاهش پارامترهای مواد بهینه شده، تأثیر هر پارامتر بر روی پاسخ نمونه‌ها در شبیه‌سازی تست کشش بررسی شد. افزایش نرخ کرنش باعث افزایش سفتی نمونه‌های تحت آزمایش شده که این سفت شدن در قسمت انتهایی پاسخ بافت در نرخ کشش آهسته‌تر (1 میلی‌متر بر دقیقه)، قابل توجه بوده و با افزایش نرخ کرنش (5 و 10 میلی‌متر بر دقیقه)، این افزایش سفتی به میزان قابل توجهی کاهش یافته است. در پایان رفتار مدل و ارتباط آن با ریز ساختارشان، از قبیل فیبر‌های کلاژنی، مورد بررسی قرار گرفته است. بررسی نتایج نشان می‌دهد که شبیه‌سازی عددی انجام شده برای پیش‌بینی رفتار بافت قرنیه در مقایسه با نتایج تجربی تقریباً بر هم منطبق و از دقت خوبی برخوردار بوده و مدل دارای پایداری قابل قبولی هست.

کلیدواژه‌ها


عنوان مقاله [English]

Characterization of Human Cornea Using an Anisotropic Fiber Reinforced Model and Inverse Finite Element Analysis

نویسندگان [English]

  • milad mahdian 1
  • alireza seifzadeh 1
  • ali mokhtarian 2
  • farideh doroodgar 3
1 Department of Biomedical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr/Isfahan, Iran
2 Department of Mechanical Engineering, Khomeinishahr Branch Islamic Azad University, Khomeinishahr/Isfahan, Iran
3 Co-founder and Consulter, Negah Eye Hospital Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
چکیده [English]

The purpose of the present study is to predict the transient response of the human cornea via a structural model appropriately representing its biomechanical behavior. Load bearing characteristics of the cornea remain poorly understood due to the complexity of its constitutive model. A constitutive model that captures the response of cornea over the whole experimental time and incorporates all included nonlinearities is necessary. In the current study, parameters of the structural anisotropic fiber-reinforced hyper-viscoelastic model have been obtained using coupled finite element-optimization analysis and the uniaxial tensile test for three different strain rates. The utilized model accounts for the dispersion of the fibers along with their reorientation during loading, the nonlinear behavior of finite tissue deformation, and the intrinsic viscoelastic property of the matrix. Results show that the higher the strain rate the higher the stiffness of tested samples. Samples showed stiffening behavior specially at the end section of the tissue response for slower tensile rates. Eventually, the model behavior and its connection with its micro structures such as the collagen fibers, have been investigated. Examining the results shows that the numerical simulations performed for the prediction of the cornea tissue behavior are in agreement with the experimental results.

کلیدواژه‌ها [English]

  • Cornea
  • tensile test
  • optimization
  • fiber-reinforced
  • hyper-viscoelastic
  • stiffening
[1] C. Roberts, "The cornea is not a piece of plastic", Journal of Refractive Surgery, Vol. 16, No. 4, 2000, pp. 407-413.
[2] C. R. Ethier, M. Johnson, and J. Ruberti, "Ocular biomechanics and biotransport", Annual Review of Biomedical Engineering, Vol. 6, 2004, pp. 249-273.
[3] Y. M. Michelacci, "Collagens and proteoglycans of the corneal extracellular matrix", Brazilian Journal of Medical and Biological Research, Vol. 36, No. 8, 2003, pp. 1037-1046.
[4] M. Mardani, B. Hashemibeni, M. M. Ansar, S. H. Zarkesh Esfahani, M. Kazemi, and V. Goharian, "Comparison between chondrogenic markers of differentiated chondrocytes from adipose derived stem cells and articular chondrocytes in vitro", Iranian Journal of Basic Medical Sciences, Vol. 16, No. 6, 2013, pp. 763-73.
[5] R. P. Vito, T. J. Shin, and B. E. McCarey, "A Mechanical Model of the Cornea: The Effects of Physiological and Surgical Factors on Radial Keratotomy Surgery", Refractive Corneal Surgery, Vol. 5, No. 2, 1989, pp. 82-88.
[6] P. Pinsky, and V. Datye, "A microstructurally-based finite element model of the incised human cornea", Journal of Biomechanics, Vol. 24, No. 10, 1991, pp. 907-922.
[7] M. Bryant, and P. McDonnell, "Constitutive laws for biomechanical modeling of refractive surgery", Journal of Biomechanical Engineering, Vol. 118, No. 4, 1996, pp. 473-481.
[8] K. A. Buzard, "Introduction to bio-mechanics of the cornea", Refractive and Corneal Surgery, Vol. 8, No. 2, 1992, pp. 127-138.
[9] W. J. Dupps, "Biomechanical modeling of corneal ectasia", Journal of Refractive Surgery, Vol. 21, No. 2, 2005, pp. 186-190.
[10] S. Velinsky, and M. Bryant, "On the Computer-Aided and Optimal Design of Keratorefractive Surgery", Refractive Corneal Surgery, Vol. 8, No. 2, 1992, pp. 173-183.
[11] E. Uchio, S. Ohno, J. Kudoh, K. Aoki, and L. T. Kisielewicz, "Simulation model of an eyeball based on finite element analysis on a supercomputer", British Journal of Ophthalmology, Vol. 83, No. 10, 1999, pp. 1106-1111.
[12] D. C. Fernández, A. M. Niazy, R. M. Kurtz, G. P. Djotyan, and T. Juhasz, "Finite element analysis applied to cornea reshaping", Journal of Biomedical Optics, Vol. 10, No. 6, 2005, pp. 1-11.
[13] D. C. Fernández, A. M. Niazy, R. M. Kurtz, G. P. Djotyan, and T. Juhasz, "Computational modeling of corneal refractive surgery", Proceedings of SPIE, Bellingham, Vol. 5, 2004, pp. 59-70.
[14] V. Alastrué, B. Calvo, E. Peña, and M. Doblaré, "Biomechanical modeling of refractive corneal surgery", Biomechanical Engineering, Vol. 128, No. 1, 2006, pp. 150-160.
[15] K. Hanna, F. Jouve, G. Waring, and P. Ciarlet, "Computer simulation of arcuate keratotomy for astigmatism", Journal of Refractive surgery, Vol. 8, No. 2, 1992, pp. 152-163.
[16] H. Howland, R. Rand, and S. Lubkin, "A Thin-Shell Model of the Cornea and its Application to Corneal Surgery", Refractive & Corneal Surgery, Vol. 8, No. 2, 1992, pp. 183-186.
[17] M. R. Bryant, V. Machi, and T. Juhasz, "Mathematical Model of Picosecond Laser Keratomileusis For High Myopia", ASME Journal of Biomechanical Engineering, Vol. 16, No. 2, 2000, pp. 155-162.
[18] G. P. Djotyan, R. M. Kurtz, D. Cabrera, and T. Juhasz, "An Analytically Solvable Model For Biomechanical Response of the Cornea to Refractive Surgery", Journal of Biomechanical Engineering, Vol. 123, No. 5, 2001, pp. 440-445.
[19] D. Huang, M. Tang, and R. Shekhar, "Mathematical Model of the Corneal Surface Smoothing After Laser Refractive Surgery", American Journal of Ophthalmology, Vol. 135, No. 3, 2003, pp. 267-278.
[20] H. L. Yeh, T. Huang, and R. Schachar, "A Closed Shell Structured Eyeball Model With Application to Radial Keratotomy", Journal of biomechanical engineering, Vol. 122, No. 5, 2000, pp. 504-510.
[21] K. D. Hanna, F. Jouve, M. H. Bercovier, and G. O. Waring," Computer Simulation of Lamellar Keratectomy and Laser Myopic Keratomileusis", Journal of Refractive Surgery, Vol. 4, No. 6, 1989, pp. 222-231.
[22] K. D. Hanna, F. Jouve, P. Ciarlet, and G. O. Waring, "Computer Simulation of Arcuate and Radial Incisions Involving the Corneoscleral Limbus", Eye, Vol. 3, No. 2, 1989, pp. 227-239.
[23] M. Dubbelman, H. A. Weeber, R. G. L. Heijde, and H. J. Völker-Dieben, "Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography", Acta Ophthalmologica Scandinavica, Vol. 80, No. 4, 2002, pp. 379-383.
[24] S. A. Read, M. J. Collins, L. G. Carney, and R. J. Franklin, "The topography of the central and peripheral cornea", Investigative Ophthalmology & Visual Science, Vol. 47, No. 4, 2006, pp. 1404-1415.
[25] M. Guillon, P. M. Lydon, and C. Wilson, "Corneal topography: a clinical model", Ophthalmic and Physiological Optics, Vol. 6, No. 1, 1986, pp. 47-56.
[26] E. Aghaian, J. E. Choe, S. Lin, and R. L. Stamper, "Central Corneal Thickness of Caucasians, Chinese, Hispanics, Filipinos, African Americans, and Japanese in a Glaucoma Clinic", Ophthalmology, Vol. 111, No. 12, 2004, pp. 2211-2219.
[27] P. Cho, and S. W. Cheung, "Central and peripheral corneal thickness measured with the TOPCON specular microscope SP-2000P", Current Eye Research, Vol. 21, No. 4, 2000, pp. 799-807.
[28] محمد رضا سلطانی صدرآبادی، بهمن وحیدی و روزبه ریاضی، "تحلیل جریان خون در حلقه‌ی ویلیس مغزی با استفاده از تصاویر سی تی اسکن و روش برهمکنش سیال-سازه"، نشریه مدل‌سازی در مهندسی، دوره 17، شماره 57، تابستان 1398، صفحه 294-285.
[29] M. Kaliske, "A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains", Computer Methods in Applied Mechanics Engineering, Vol. 185, No. 2, 2000, pp. 225-243.
[30] A. Pandolfi, and F. Manganiello, "A model for the human cornea: constitutive formulation and numerical analysis", Biomechanics and Modeling in Mechanobiology, Vol. 5, No. 4, 2006, pp. 237-246.
[31] A. Elsheikh, D. Wang, A. Kotecha, M. Brown, and D. Garway, "Evaluation of Goldmann Applanation Tonometry Using a Nonlinear Finite Element Ocular Model", Annals of Biomedical Engineering, Vol. 34, No. 10, 2006, pp. 1628-1640.
[32] P. Su, Y. Yang, J. Xiao, and Y. Song, "Corneal hyper viscoelastic model: derivations, experiments, and simulations", Acta of Bioengineering and Biomechanics, Vol. 17, No. 2, 2015, pp. 73-84.
[33] Ch. Whitford, V. Movchan, H. Studer, and A. Elsheikh, "A viscoelastic anisotropic hyperelastic constitutive model of the human cornea", Biomechanics and Modeling in Mechanobiology, Vol. 17, No. 2, 2018, pp. 19-29.
[34] A. E. M. Tag Eldin, A. Haddad Ahmad, and A. Kh. Abdelmonem, "Evaluation of the Effect of Diabetes Mellitus on Corneal Biomechanics", The Egyptian Journal of Hospital Medicine, Vol. 74, No. 4, 2019, pp. 782-788.
[35] K. H. Ahmed, A. El-Hagaa, and A. A. Sokar, "Comparison of corneal hysteresis in eyes with high cylindrical errors with and without keratoconus", Menoufia Medical Journal, Vol. 31, No. 1, 2018, pp. 283-288.
[36] A. Seifzadeh, D. C. D. Oguamanam, N. Trutiak, M. Hurtig, and M. Papini, "Determination of nonlinear fibre-reinforced biphasic poroviscoelastic constitutive parameters of articular cartilage using stress relaxation indentation testing and an optimizing finite element analysis", computer methods and programs in biomedicine, Vol. 107, No. 2, 2012, pp. 315-326.
[37] M. Nazouri, A. Seifzadeh, and E. Masaeli, "Characterization of polyvinyl alcohol hydrogels as tissue-engineered cartilage scaffolds using a coupled finite element-optimization algorithm", Journal of biomechanics, Vol. 99, 2020, pp. 109525.
[38] A. Seifzadeh, J. Wang, D. C. D. Oguamanam, and M. Papini, "A nonlinear biphasic fiber-reinforced porohyperviscoelastic model of articular cartilage incorporating fiber reorientation and dispersion", Journal of biomechanical engineering, Vol. 133, No. 8, 2011, pp. 081004.
[39] A. Seifzadeh, J. Wang, D. C. D. Oguamanam, and M. Papini, "Evaluation of the constitutive properties of native, tissue engineered, and degenerated articular cartilage", Clinical Biomechanics, Vol. 27, No. 8, 2012a, pp. 852-858.
[40] C. Boote, S. Dennis, Y. Huang, A. J. Quantock, and K. M. Meek, "Lamellar orientation in human cornea in relation to mechanical properties", Journal of Structural Biology, Vol. 149, No. 1, 2005, pp. 1-6.
[41] L. J. Müller, E. Pelsa, L. R. H. M. Schurmans, and G. F. J. M. Vrensen, "A new three dimensional model of the organization of proteoglycans and collagen fibrils in the human corneal stroma", Experimental Eye Research, Vol. 78, No. 3, 2004, pp. 493-501.
[42] Y. Pouliquen, "Fine structure of the corneal stroma", Cornea, Vol. 3, No. 3, 1985, pp. 77-168.
[43] D. A. Parry, and A. S. Craig, "Electron microscope evidence for an 80 A° unit in collagen fibrils", Nature, Vol. 282, 1979, pp. 213-215.
[44] Y. Komai, and T. Ushiki, "The three-dimensional organization of collagen fibrils in the human cornea and sclera", Investigative Ophthalmology & Visual Science, Vol. 32, No. 8, 1991, pp. 2244-2258.
[45] D. M. Maurice, and F. Monroe, "Cohesive strength of corneal lamellae", Experimental Eye Research, Vol. 50, No. 1, 1990, pp. 50-59.
[46] T. C. Gasser, R. W. Ogden, and G. A. Holzapfel, "Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations", Journal of the Royal Society Interface, Vol. 3, No. 6, 2006, pp. 15-35.
[47] P. J. Flory, "Thermodynamic Relations for Highly Elastic Materials", Transactions of the Faraday Society, Vol. 57, No. 5, 1961, pp. 829-838.
[48] R. W. Ogden, "Nearly Isochoric Elastic Deformations: Application to Rubber like Solids", Journal of the Mechanics and Physics of Solids, Vol. 26, No. 1, 1978, pp. 37-57.
 
[49] E. Pena, B. Calvo, M. A. Martinez, and M. Doblare, "An Anisotropic Visco-hyperelastic Model for Ligaments at Finite Strains. Formulation and Computational Aspects", International Journal of Solids and Structures, Vol. 44, No. 3, 2007, pp. 760-778.
[50] A. Daxer, and P. Fratzl, "Collagen Fibril Orientation in the Human Corneal Stroma and Its Implication in Keratoconus", Investigative Ophthalmology & Visual Science, Vol. 38, No. 1, 1997, pp. 121-129.
[51] Y. Zeng, J. Yang, K. Huang, Zh. Lee, and X. Lee, "A comparison of biomechanical properties between human andporcine cornea", Journal of Biomechanics, Vol. 34, No. 4, 2001, pp. 533-537.
[52] G. A. Holzapfel, T. C. Gasser, and R. W. Ogden, "A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models", Journal of Elasticity, Vol. 61, No. 1, 2000, pp. 1-48.
[53] G. A. Holzapfel, and T. C. Gasser, "A Viscoelastic Model for Fiber-Reinforced Composites at Finite Strains: Continuum Basis, Computational Aspects and Applications", Computer Methods in Applied Mechanics Engineering, Vol. 190, No. 34, 2001, pp. 4379-4430.
[54] G. A. Holzapfel, "Nonlinear Solid Mechanics", A Continuum Approach for Engineering, John Wiley and Son, Chichester, United Kingdom, 2000.
[55] L. P. Li, J. Solhat, M. D. Buschman, and A. Shirazi-Adl, "Nonlinear Analysis of Cartilage in Unconfined Ramp Compression Using a Fibril Reinforced Poroelastic Model", Clinical Biomechanics, Vol. 14, No. 9, 1999, pp. 673-682.
[56] D. Hibbit, B. Karlsona, and P. Sorenson, ABAQUS Manual, ver. 6.3, Pawtucket, USA, 2006.
[57] P. J. Gage, "New approaches to optimization in aerospace conceptual design", Ph.D. Thesis, Stanford University, USA, 1994.
[58] K. Athanasiou, C. Zhu, X. Wang, and C. Agrawal, "Effects of aging and dietary restriction on the structural integrity of rat articular cartilage", Annals of biomedical engineering, Vol. 28, No. 2, 2000, pp. 143-149.
[59] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by Simulated Annealing", Science, Vol. 220, No. 4598, 1983, pp. 671-680.
[60] فرشاد حکیم پور، سیامک طلعت اهری و ابوالفضل رنجبر، "ارزیابی و مقایسه الگوریتم های بهینه سازی ژنتیک، شبیه سازی تبرید و فاخته ها در مکان یابی رقابتی تسهیلات (مطالعه موردی: بانکها)"، نشریه مدل‌سازی در مهندسی، دوره 15، شماره 48، بهار 1396، صفحه 246-231.
[61] سید حسین فلاح و محمدصادق ولی پور، "مدل‌سازی و بهینه سازی نیروگاه دودکش خورشیدی با الگوریتم‌های SA وPSO "، نشریه مدل‌سازی در مهندسی، دوره 16، شماره 53، تابستان 1397، صفحه 87-75.
[62] H. B. Amnieh, M. H. Bidgoli, H. Mokhtari and A. A. Bazzazi, "Application of simulated annealing for optimization of blasting costs due to air overpressure constraints in open-pit mines", Journal of Mining and Environment (JME), Vol. 10, No. 4, 2019, pp. 903–916.
[63] F. Bao, M. Deng, Q. Wang, J. Huang, J. Yang, C. Whitford, B. Geraghty, A. Yu, and A. Elsheikh, "Evaluation of the relationship of corneal biomechanical metrics with physical intraocular pressure and central corneal thickness in ex vivo rabbit eye globes", Experimental Eye Research, Vol. 137, No. 8, 2015, pp. 11–17.
[64] A. Elsheikh, and K. Anderson, "Comparative study of corneal strip extensometry and inflation tests", Journal of the Royal Society Interface, Vol. 2, No. 3, 2005, pp. 177-185.
[65] A. Montanino, A. Gizzi, M. Vasta, M. Angelillo, and A. Pandolfi, "Modeling the biomechanics of the human cornea accounting for local variations of the collagen fibril architecture", Journal of Applied Mathematics and Mechanics, Vol. 98, No. 12, 2018, pp. 1-13.
[66] G. Wollensak, E. Spoerl, and T. Seiler, "Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-a-induced cross-linking", Journal of Cataract & Refractive Surgery, Vol. 29, No. 5, 2003, pp. 1780-1785.
[67] M. R. Bryant, K. Szerenyi, H. Schmotzer, and P. J. McDonnel, "Corneal tensile strength in fully healed radial keratotomywounds", Investigative Ophthalmology and Visual Science, Vol. 35, No. 7, 1994, pp. 3022–3031.
[68] D. A. Hoeltzel, P. Altman, K. Buzard, and K. Choe, "Strip Extensiometry for Comparison of the Mechanical Response of Bovine, Rabbit, and Human Corneas", Journal of Biomechanical Engineering, Vol. 114, No. 2, 1992, pp. 202-215.
[69] A. Pandolfi, and G. A. Holzapfel, "Three-Dimensional Modeling and Computational Analysis of the Human Cornea Considering Distributed Collagen Fibril Orientations", Journal of Biomechanical Engineering, Vol. 130, No. 6, 2008, pp. 061006-12.