]1[ محمد علیزاده، میثم جعفری نوکندی و یامین سلطان مرادی، "مدلسازی و بهینهسازی مصرف انرژی در خانه هوشمند با حضور ذخیرهساز انرژی، سلول خورشیدی، خودروی برقی و پاسخگویی بار"، مدلسازی در مهندسی. شماره 17، پاییز 1398، صفحه 226-215.
[2] M. Hemmati, B. Mohammadi-Ivatloo, M. Abapour, and A. Anvari-Moghaddam, "Optimal Chance-Constrained Scheduling of Reconfigurable Microgrids Considering Islanding Operation Constraints", IEEE Systems Journal, 2020.
[3] Y. Xu, T. Ding, Q. Ming, and P. Du, "Adaptive dynamic programming based gas-power network constrained unit commitment to accommodate renewable energy with combined-cycle units", IEEE Transactions on Sustainable Energy, 2019. pp. 118-129.
]4[ جمشید آقائی، امین رحیمی رضایی و محمد رضا کریمی، "هماهنگی نیروگاههای بادی و دستگاههای ذخیرهساز سیستم قدرت در مسئلهی برنامهریزی امنیت-مقید مشارکت واحدها با استفاده از بهینهسازی استوار"، مدل سازی در مهندسی.شماره 16، زمستان 1398، صفحه 220-207.
[5] Yang, Z., C. Gao, and M. Zhao, "The Optimal Investment Strategy of P2G Based on Real Option Theory", IEEE Access, Vol. 8, 2019, pp.127156-127166.
[6] A. Lewandowska-Bernat, and U. Desideri, "Opportunities of power-to-gas technology in different energy systems architectures", Applied energy, Vol. 228, 2018, pp. 57-67.
[7] V. Heinisch, "Effects of power-to-gas on power systems: A case study of Denmark", 2015 IEEE Eindhoven Power Tech, 2015.
[8] B. Lyseng, T. Niet, J. English, V. Keller, K. Palmer-Wilson, B. Robertson, A. Rowe, and P. Wild, "System-level power-to-gas energy storage for high penetrations of variable renewables", international journal of hydrogen energy, Vol. 43, No. 4, 2018, pp. 1966-1979.
[9] J. Yang, N. Zhang, Y. Cheng, Ch. Kang, and Q. Xia, "Modeling the Operation Mechanism of Combined P2G and Gas-Fired Plant With CO 2 Recycling", IEEE Transactions on Smart Grid, Vol. 10, No.1, 2018, pp. 1111-1121.
[10] Y. Li, W. Liu, M. Shahidepour, F. Wen, K, Wang, and Y. Huang, "Optimal operation strategy for integrated natural gas generating unit and power-to-gas conversion facilities", IEEE Transactions on Sustainable Energy, Vol. 9, No.4, 2018, pp. 1870-1879.
[11] M. Nazari-Heris, M. A. Mirzaei, B. Mohammadi-Ivatloo, M. Marzband, and S. Asadi, "Economic-environmental effect of power to gas technology in coupled electricity and gas systems with price-responsive shiftable loads", Journal of Cleaner Production, Vol. 244, 2020, pp. 118769.
[12] X. Yu, G. Zhu, S. Wang, and Y. Ding, "Economic impact of power to gas in integrated electricity and gas system with high wind penetration", 2018 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), 2018.
[13] M.Budt, D. Wolf, R. Span, and J. Yan, "A review on compressed air energy storage: Basic principles, past milestones and recent developments", Applied energy, Vol. 170, 2016, pp. 250-268.
[14] Cao, X., J. Wang, and B. Zeng, "Networked microgrids planning through chance constrained stochastic conic programming", IEEE Transactions on Smart Grid, Vol. 10, No.6, 2019, pp. 6619-6628.
[15] A. N. Ghalelou, A. P. Fakhri, S. Nojavan, M. Majidi, and H. Hatami, "A stochastic self-scheduling program for compressed air energy storage (CAES) of renewable energy sources (RESs) based on a demand response mechanism", Energy conversion and management, Vol. 120, 2016, pp. 388-396.
[16] M. Abbaspour, M. Satkin, B. Mohammadi-Ivatloo , F. H. Lotfi, and Y. Noorollahi, "Optimal operation scheduling of wind power integrated with compressed air energy storage (CAES) ", Renewable Energy, Vol. 51, 2013, pp. 53-59.
[17] C. He, T. Liu, L. Wu, and M. Shahidepour, "Robust coordination of interdependent electricity and natural gas systems in day-ahead scheduling for facilitating volatile renewable generations via power-to-gas technology", Journal of Modern Power Systems and Clean Energy, Vol. 5, No. 3, 2017, pp. 375-388.
[18] S. Ghavidel, M. J. Ghadi, A. Azizvahed, J. Aghaei, L. Li, and J. Zhang, "Risk-constrained bidding strategy for a joint operation of wind power and CAES aggregators", IEEE Transactions on Sustainable Energy, Vol. 11, No.1, 2019, pp. 457-466.
[19] E. Akbari, R. A. Hooshmand, M. Gholipour, and, M. Parastegari, "Stochastic programming-based optimal bidding of compressed air energy storage with wind and thermal generation units in energy and reserve markets" Energy, Vol. 171, 2019, pp. 535-546.
[20] Jadidbonab, M., H. Mousavi-Sarabi, and B. Mohammadi-Ivatloo, "Risk-constrained scheduling of solar-based three state compressed air energy storage with waste thermal recovery unit in the thermal energy market environment", IET Renewable Power Generation, Vol. 13, No. 6, 2018, pp. 920-929.
[21] Mazza, A., E. Bompard, and G. Chicco, "Applications of power to gas technologies in emerging electrical systems", Renewable and Sustainable Energy Reviews, Vol. 92, 2018, pp. 794-806.
[22] M. Hemmati, B. Mohammadi-Ivatloo, S. Ghasemzadeh, and E. Reihani, "Risk-based optimal scheduling of reconfigurable smart renewable energy based microgrids", International Journal of Electrical Power & Energy Systems, Vol. 101, 2018, pp. 415-428.
]23[ نیما امجدی، بهداد وطنی و حسین شریف زاده، "آرایش بهینه تصادفی تولید برای شرکتهای مولد با در نظر گرفتن بازار انرژی و قراردادهای دوجانبه"، مدل سازی در مهندسی, شماره 9. زمستان 1390. صفحه 28-21.
[24] C. Gu, C. Tang, Y. Xiang, and D. Xie, "Power-to-gas management using robust optimisation in integrated energy systems", Applied Energy, Vol. 236, 2019, pp. 681-689.
[25] W. Cai, R. Mohammaditab, G. Fathi, K. Wakil, A. G. Ebadi, and N. Ghadimi, "Optimal bidding and offering strategies of compressed air energy storage: A hybrid robust-stochastic approach", Renewable Energy, Vol. 143, 2019, pp. 1-8.
[26] Y. Zhou, Z. Wei, G. Sun, K. W. Cheung, H. Zang, and S. Chen, "A robust optimization approach for integrated community energy system in energy and ancillary service markets", Energy, Vol. 148, 2018, pp. 1-15.