مدلسازی و بررسی تجربی عملکرد هندسه‌های مختلف میکروکانال‌های عریض و باریک در به-دام اندازی ذرات

نوع مقاله : مقاله مکانیک

نویسندگان

1 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران

2 گروه مهندسی برق، دانشکده فنی و مهندسی، دانشگاه بین‌المللی امام خمینی(ره)، قزوین، ایران

3 گروه مکانیک. دانشکده فنی. دانشگاه بین المللی امام خمینی

4 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه بین‌المللی امام خمینی(ره)، قزوین، ایران

چکیده

در این مقاله به روشی ابداعی (شبه سه بعدی) موفق شدیم تاثیر همزمان نیروهای اینرسی و مگنوس را به منظور متمرکز سازی و به دام‌اندازی ذرات در کانال‌های مستقیم و عریض و باریک، شبیه سازی نماییم. همچنین هندسه های متفاوتی نسبت به کارهای پیشین برای استفاده در این نوع از ادوات بررسی شده است که پیش از این شبیه سازی نشده بود. شبیه‌سازی‌ها در محیط نرم افزار کامسول که مبتنی بر روش‌های المان محدود می‌باشد، صورت گرفته است و آزمایش‌ها با استفاده از میکروکانال‌های ساخته شده با روش لیتوگرافی و ماده‌ی PDMS و عکس‌برداری توسط میکروسکوپ نوری انجام شده است. استفاده از روش شبیه‌سازی شبه سه بعدی موجب شد زمان شبیه‌سازی‌ها 88% کاهش یابد. نتایج نشان می‌دهد با افزایش قطر ذرات و عدد رینولدز جریان در میکروکانال‌ها، ذرات سریع‌تر به تعادل می‌رسند و با تغییر نسبت ابعادی کانال، موقعیت تعادلی ذرات تغییر می‌کنند و الگوهای تعادلی مختلفی مشاهده می‌شود. در کانال‌های عریض و باریک نیز افزایش قطر ذرات موجب افزایش بازدهی بدام اندازی کانال می‌شود. نتایج آزمایشگاهی نیز صحت نتایج شبیه‌سازی را مورد تایید قرار می‌دهد و ذرات 19 میکرونی در بخش عریض کانال بدام افتاده درحالیکه ذرات 10 میکرونی از آن خارج می‌شوند. اما افزایش دبی تنها تا رسیدن به بهینه‌ی آن یعنی ml/min 35/0 موجب افزایش بازده می‌شود و پس از آن افزایش دبی تاثیر مثبتی بر بازده ندارد. همچنین با تغییر هندسه‌ی بخش عریض از مستطیل به دایره، بازدهی به دام اندازی افزایش و به 0.86 رسید.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical and experimental study of different geometries of expansion-contraction microchannels in particle sorting

نویسندگان [English]

  • Hanieh Heidari 1
  • Seyed Ali Hosseini, 2
  • سید عباس سادات سکاک 3
  • rajabpour rajabpour 4
1 Mechanical Engineering Department, Imam Khomeini International University, Qazvin, Iran.
2 Electrical Engineering Department, Imam Khomeini International University, Qazvin, Iran
3 Mechanical Engineering Department, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran
4 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه بین‌المللی امام خمینی(ره)، قزوین، ایران
چکیده [English]

In this paper, a new simulation method (quasi-three-dimensional) is introduced to model devices based on inertial and Magnus forces. Simulations were computed using the COMSOL software. The experiments were performed using micro channels made by lithography method out of PDMS and glass slides. The use of quasi-three-dimensional simulation method made the simulation time much shorter. Results showed with increasing the particle diameter and the flow Reynolds number in microchannels, particles reach their equilibrium positions faster and with changing aspect ratio of channel, equilibrium position of particles changed and different steady state patterns were observed. In expansion-contraction channels, increasing the particle diameter also increases the channel efficiency. But increasing the flow rate to reach its optimum of 3.5ml/min enhances the efficiency and then, increasing flow rate beyond it, would not have a positive effect on efficiency anymore. Also with changing geometry of expansion section from rectangle to circle, the capture efficiency reached 0.86. Experimental results also confirm the accuracy of the simulation results and 19 micrometer particles are trapped in the wide part of the channel and 10 micrometer particles come out of it.

کلیدواژه‌ها [English]

  • Microfluidics
  • Inertial Separation
  • Magnus
  • Secondary Flow
  • Hydrodynamics Lift
  • Vortex
[1] C. P. Wild, “The global cancer burden: necessity is the mother of prevention”, Nature Reviews Cancer, Vol. 19, No. 3, 2019, pp. 123-124.[2] K. Cui, Y. Ou, Y. Shen, S. Li, and Z. Sun, “Clinical value of circulating tumor cells for the diagnosis and prognosis of hepatocellular carcinoma (HCC): A systematic review and meta-analysis” Medicine, Vol. 99, No. 40, 2020.
[3] Y. Suhail, “Systems biology of cancer metastasis”, Cell systems, Vol. 9.2, 2019, pp. 109-127.
[4] D. Adams, O. Makarova, P. Zhu, S. Li, P. T. Amstutz, and C. M. Tang, “Rapid and Efficient Isolation of Circulating Tumor Cells using High Porosity Precision Microfilters”, Cancer Detection and Diagnostics Technologies for Global Health, Vol. 301, 2020, pp. 983-1650.
[5] H. A. Santos, D. Liu, and H. Zhang, Microfluidics for Pharmaceutical Applications, 1st ed., William Andrew Publishing, 2019.
[6] S. A. Hosseini, S. Azimi, and S. Mohajerzadeh, “Formation of homogenous nanofibers using silicon microneedle spinnerets”,  Microsystem Technologies, Vol. 18, No. 12, 2012, pp. 2063-2070.‏
[7] P. Y. Chu, C. H. Hsieh, and M. H. Wu, “The Combination of Immunomagnetic Bead-Based Cell Isolation and Optically Induced Dielectrophoresis (ODEP)-Based Microfluidic Device for the Negative Selection-Based Isolation of Circulating Tumor Cells (CTCs)”, Frontiers in bioengineering and biotechnology, Vol. 921, 2020.
[8] A. Shamloo, A. Yazdani, and F. Saghafifar, “Investigation of a two‐step device implementing magnetophoresis and dielectrophoresis for separation of circulating tumor cells from blood cells”, Engineering in life sciences, Vol. 20, No. 7, 2020, pp. 296-304. ‏
[9] X. Zhang, X. Xu, Y. Ren, Y. Yan, and A. Wu, “Numerical simulation of circulating tumor cell separation in a dielectrophoresis based YY shaped microfluidic device”, Separation and Purification Technology, Vol. 255,  2021.
[10] J. Lee, O. Sul, and S. B. Lee, “Enrichment of circulating tumor cells from whole blood using a microfluidic device for sequential physical and magnetophoretic separations”, Micromachines, Vol. 11, No. 5, 2020.
[11] C. Chelakkot, J. Ryu, M. Y. Kim, J. S. Kim, D. Kim, J. Hwang, and S. H. Park, “An Immune–Magnetophoretic Device for the Selective and Precise Enrichment of Circulating Tumor Cells from Whole Blood”, Micromachines, Vol. 11, No. 6, 2020.
[12] M. Hosseini, M. Hasani, M. Biglarian, A. H. Amoei, D. Toghraie, A. Abouei Mehrizi, and S. Rostami, “The effect of the second excitation frequency mode under different conditions on the fluid streaming and microparticles acoustophoresis with the aim of separating biological cells”, Computer methods and programs in biomedicine, Vol. 184, 2020.
[13] D. Shahani, A. Ramiar, and A. Mahboubidoust, “Numerical Simulation of Same-sized Cells Focusing and Separation with Surface Acoustic Waves”, Journal Of Applied and Computational Sciences in Mechanics, Vol. 32, No. 1, 2021, pp. 77-92.
[14] H. Safarpour, S. Dehghani, R. Nosrati, N. Zebardast, M. Alibolandi, A. Mokhtarzadeh, and M. Ramezani. “Optical and electrochemical-based nano-aptasensing approaches for the detection of circulating tumor cells (CTCs)”, Biosensors and Bioelectronics, Vol. 148, 2020, pp. 111833.
[15] O. Noruzshamsian, A. Mohseni, and M. Mojaddam, “Design of a Micro-Separator for Circulating Tumor Cells (CTCs) from Blood Flow Using Hybrid Pinched Flow Fractionation (PFF) and Dielectrophoresis Methods”, Journal of Solid and Fluid Mechanics, Vol. 10, No. 1, 2020, pp. 281-296.
[16] K. Loutherback, K. S. Chou, J. Newman, J. Puchalla, R. H. Austin, and J. C. Sturm, “Improved performance of deterministic lateral displacement arrays with triangular posts”, Microfluidics and nanofluidics, Vol. 9, No. 6, 2010, pp. 1143-1149.‏
[17] Z. Liu, Y. Huang, W. Liang, J. Bai, H. Feng, Z. Fang, and G. Tian, “Cascaded filter deterministic lateral displacement microchips for isolation and molecular analysis of circulating tumor cells and fusion cells”, Lab on a Chip, Vol. 21, No. 15, 2021, pp. 2881-2891.
[18] R. Bhattacharjee, R. Kumar, and F. Al-Turjman, “A Novel Approach for Tuning of Fluidic Resistance in Deterministic Lateral Displacement Array for Enhanced Separation of Circulating Tumor Cells”, Cognitive Computation, 2021, pp. 1-17.
[19] K. J. Smith, J. A. Jana, A. Kaehr, E. Purcell, T. Opdycke, C. Paoletti, L. Cooling, D. H. Thamm, D. F. Hayes, and S. Nagrath, “Inertial focusing of circulating tumor cells in whole blood at high flow rates using the microfluidic CTCKey™ device for CTC enrichment”, Lab on a Chip, Vol. 21, No. 18, 2021, pp. 3559-3572.
[20] Y. Gou, J. Liu, C. Sun, P. Wang, Z. You, and D. Ren, “Inertial-Assisted Immunomagnetic Bioplatform towards Efficient Enrichment of Circulating Tumor Cells”, Biosensors, Vol. 11, No. 6, 2021, pp. 183.
[21] C, Lu, J. Xu, J. Han, X. Li, N. Xue, J. Li, and W. Wu, “A novel microfluidic device integrating focus-separation speed reduction design and trap arrays for high-throughput capture of circulating tumor cells”, Lab on a Chip, Vol. 20, No. 22, 2020, pp. 4094-4105.
[22] J. Zhang, S. Yan, D. Yuan, G. Alici, N. T. Nguyen, M. E. Warkiani, and W. Li, “Fundamentals and applications of inertial microfluidics: a review”, Lab on a Chip, Vol. 16.1, 2016, pp. 10-34.‏
[23] G. Segre, and A. Silberberg, “Radial particle displacements in Poiseuille flow of suspensions”, Nature, Vol.189.4760, 1961, pp. 209-210.‏
[24] J. P. Matas, J. F. Morris, and É. Guazzelli. “Inertial migration of rigid spherical particles in Poiseuille flow”, Journal of Fluid Mechanics, Vol. 515, 2004, pp. 171-195.‏
[25] D. D. Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels “,Proceedings of the National Academy of Sciences, Vol. 104.48, 2007, pp. 18892-18897.‏
[26] J. Zhou, P. V. Gridhar, S. Kasper, and I. Papautsky, “Modulation of aspect ratio for complete separation in an inertial microfluidic channel”, Lab on a Chip, Vol. 13, No. 10, 2013, pp. 1919-1929.‏
[27] C. Liu, G. Hu, X. Jiang, and J. Sun, “ Inertial focusing of spherical particles in rectangular microchannels over a wide range of Reynolds numbers”, Lab on a Chip, Vol. 15, No. 4, 2015, pp. 1168-1177.‏
[28] I. Lashgari, MN. Ardekani, I. Banerjee, A. Russom, and L. Brandt, “Inertial migration of spherical and oblate particles in straight ducts”, Journal of fluid mechanics, Vol. 819, 2017.‏
[29] محمد محسن شاه مردان، محمود نوروزی و امین شهبانی ظهیری، "بررسی عددی تأثیر گردابه‌ها بر روی افت فشار و تلفات جریان در داخل کانال با انبساط تدریجی صفحه‌ای‏"، نشریه مهندسی در مدل‌سازی در مهندسی، 1396، دوره 15، شماره 48، صفحه 45-16.
[30] مهدی اژدری مقدم و مهنا تاج نسایی، " مدل‏سازی عددی سلول‏های جریان ثانویه در کانال‏های ذوزنقه‏ای با زبری یکنواخت"، نشریه مدل‌سازی در مهندسی، 1389، دوره 8، شماره 20، صفحه 57 – 70.
 [31] J. Zhang, M. Li, W. H. Li, and G. Alici, “ Inertial focusing in a straight channel with asymmetrical expansion–contraction cavity arrays using two secondary flows”, Journal of Micromechanics and Microengineering, Vol. 23, No. 8, 2013, pp. 085023.‏
[32] E. Sollier, D. E. Go, J. Che, D. R. Gossett, S. O'Byrne, W. M. Weaver, N. Kummer, M. Rettig, J. Goldman, N. Nickols, and S. McCloskey, “Size-selective collection of circulating tumor cells using Vortex technology”, Lab on a Chip, Vol. 14, No. 1, 2014, pp. 63-77.‏
[33] G. Y. Kim, J. I. Han, and J. K. Park, “Inertial microfluidics-based cell sorting”, Bio Chip Journal, Vol. 12, No. 4, 2018, pp. 257-267.‏
]34[ محمد مهدی قدیری، سید علی حسینی، سید عباس سادات سکاک و علی رجب پور، "بررسی پارامترهای مؤثر در به دام­اندازی ذرات به کمک جریان‌های ثانویه در میکروکانال‌های با مقطع مستطیلی متغیر"، نشریه مدل‌سازی در مهندسی، 1400، دوره 19، شماره 65.
[35] L. Liu, L. Han, X. Shi, W. Tan, W. Cao, and G. Zhu, “Hydrodynamic separation by changing equilibrium positions in contraction–expansion array channels”, Microfluidics and Nanofluidics, Vol. 23, No. 4, 2019, pp. 1-12.
[36] G.Y. Kim, J. Son, J. I. Han, and J.K. Park, “Inertial Microfluidics-Based Separation of Microalgae Using a Contraction–Expansion Array Microchannel”, Micromachines, Vol. 12, No. 1, 2021, pp. 97.
[37] J. M. Martel, and M. Toner, “Inertial focusing in microfluidics”, Annual review of biomedical engineering, Vol. 16, 2014, pp. 371-396.‏