[1] M. Shannon, P. Bohn, M. Elimelech, J. Georgiadis, B. Marinas, and A. Mayes, "Science and technology for water purification in the coming decades", Nature, Vol. 452, March 2008, pp. 301–310.
[2] حدیقه محمدی، ابوالفضل اکبرپور و علی باقری، «مدلسازی اندرکنش منابع آب و ارزش افزوده دشت بیرجند »، نشریه مدلسازی در مهندسی، دوره 16، شماره 55، زمستان 1397، صفحه 279-298.
[3] A. Nicolaï, B. Sumpter, and V. Meunier, "Tunable water desalination across graphene oxide framework membranes", Physical Chemistry Chemical Physics, Vol. 16, No. 18, 2014, pp. 8646-54.
[4] احسان فتوحی بافقی، نادر رهبر و جواد ابوالفضلی اصفهانی، «بهسازی تولید در آبشیرینکن خورشیدی لولهای با استفاده از مدلسازی عددی»، نشریه مدلسازی در مهندسی، دوره 11، شماره 33، تابستان 1392، صفحه 45-56.
[5] S. Dervin, D. Dionysiou, and S. Pillai, "2D nanostructures for water purification: graphene and beyond", Nanoscale, Vol. 8, No. 8, 2016, pp.15115-31.
[6] مریم نیری و مهدیه نیری، «طراحی و شبیهسازی مدار جمع کننده پنج ارزشی جدید مبتنی بر ترانزیستور نانو نوار گرافن» نشریه مدلسازی در مهندسی، دوره 11، شماره 33، تابستان 1392، صفحه 45-56.
[7] C. Sun, M. Liu, and B. Bai, "Molecular simulations on graphene-based membranes", Carbon, Vol. 153, No. 1, 2019, pp. 481-94.
[8] G. Cicero, J. Grossman, E. Schwegler, F. Gygi, and G. Galli, "Water confined in nanotubes and between graphene sheets: A first principle study", Journal of the American Chemical Society, Vol. 130, No. 13, February 2008, pp. 1871-8.
[9] D. Cohen-Tanugi, and J. Grossman, "Water desalination across nanoporous graphene", Nano letters, Vol. 12, No. 7, July 2012, pp. 3602-8.
[10] B. Liu, R. Wu, J. Baimova, H. Wu, A. Law, S. Dmitriev, and K. Zhou, "Molecular dynamics study of pressure-driven water transport through graphene bilayers", Physical Chemistry Chemical Physics, Vol. 18, No. 3, 2016, pp. 1886-1896.
[11] R. Devanathan, D. Chase-Woods, Y. Shin, and D. Gotthold, "Molecular dynamics simulations reveal that water diffusion between graphene oxide layers is slow", Scientific reports, Vol. 6, No. 1, July 2016, pp. 1-8.
[12] C. Sun, M. Liu, and B. Bai, "Molecular simulations on graphene-based membranes", Carbon, Vol. 153, November 2016, pp. 481-94.
[13] W. Cao, J. Wang, and M. Ma, "Water diffusion in wiggling graphene membranes", The journal of physical chemistry letters, Vol. 10, No. 22, November 2019, pp. 7251-8.
[14] Z. Zhao, R. Zhou, and C. Sun, "Molecular dynamics study of water diffusivity in graphene nanochannels", International Journal of Thermophysics, Vol. 41, No. 6, June 2020, pp. 1-2.
[15] C. Sun, R. Zhou, Z. Zhao and B. Bai, "Unveiling the hydroxyl-dependent viscosity of water in graphene oxide nanochannels via molecular dynamics simulations", Chemical Physics Letters, Vol. 778, September 2021, pp. 138808.
[16] C. Chen, L. Jia, J. Li, L. Zhang, L. Liang, E. Chen, Z. Kong, X. Wang, W. Zhang, JW. Shen, "Understanding the effect of hydroxyl/epoxy group on water desalination through lamellar graphene oxide membranes via molecular dynamics simulation", Desalination, Vol. 491, October 1 2020, pp. 114560.
[17] B. Zheng, Y. Tian, S. Jia, X. Zhao, H. Li, "Molecular dynamics study on applying layered graphene oxide membranes for separating cadmium ions from water", Journal of Membrane Science, Vol. 603, May 2020, pp. 117996.
[18] S. Plimpton, "Fast parallel algorithms for short-range molecular dynamics", Journal of Computational Physics, Vol. 117, No. 1, 1995, pp. 1–19.
[19] W. Jorgensen, J. Madura, and C. Swenson, "Optimized intermolecular potential functions for liquid hydrocarbons", Journal of the American Chemical Society, Vol. 106, No. 22, October 1984, pp. 6638-46.
[20] J. MacKerell, D. Bashford, M. Bellott, and R. Dunbrack, J. Evanseck, M. Field, S. Fischer, J. Gao, H. Guo, S. Ha, and D. McCarthy, "All-atom empirical potential for molecular modeling and dynamics studies of proteins", The journal of physical chemistry B, Vol. 102, No. 18, April 1998, pp. 3586-616.
[21] D. Tildesley, and M. Allen, Computer simulation of liquids, Clarendon Press, 1987.
[22] F. Zhu, E. Tajkhorshid, and K. Schulten, "Pressure-induced water transport in membrane channels studied by molecular dynamics", Biophysical journal, Vol. 83, No. 1, July 2002, pp. 154-160.
[23] P. Waggoner, and H. Craighead, "Micro-and nanomechanical sensors for environmental, chemical, and biological detection", Lab on a Chip, Vol. 7, No. 10, 2007, pp. 1238-1255.
[24] L. Wang, R. Dumont, and J. Dickson, "Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure", The Journal of chemical physics, Vol. 137, No. 4, July 2012, pp. 044102.
[25] J. Goldsmith, and C. Martens, "Molecular dynamics simulation of salt rejection in model surface-modified nanopores", The Journal of Physical Chemistry Letters, Vol. 1, No. 2, January 2010, pp. 528-35.
[26] J. Hansen, and I. McDonald, Theory of simple liquids: with applications to soft matter, Academic Press, 2013.
[27] مهدی صاحبی بهنمیری و احمدرضا عظیمیان، «بررسی مکانیزم جریان خزش گرمایی در نانولولهها به وسیله روش دینامیک مولکولی»، مهندسی مکانیک مدرس، دوره 15، شماره 10، زمستان ۱۳۹۴، صفحه ۲۲۵-۲۳۲.
[28] A. Berezhkovskii, and G. Hummer, "Single-file transport of water molecules through a carbon nanotube", Physical review letters, Vol. 89, No. 6, July 2002, pp. 064503.
[29] B. Liu, R. Wu, J. Baimova, H. Wu, A. Law, S. Dmitriev, and K. Zhou, "Molecular dynamics study of pressure-driven water transport through graphene bilayers", Physical Chemistry Chemical Physics, Vol. 18, No. 3, 2016, pp. 1886-1896.