‏ بررسی عبور آب از نانوکانال متشکل از صفحات گرافن به روش شبیه‌سازی دینامیک مولکولی

نوع مقاله : مقاله مکانیک

نویسندگان

1 گروه مهندسی مکانیک دانشگاه صنعتی قم

2 دانشکده مهندسی مکانیک، دانشگاه صنعتی قم، قم

چکیده

در سال‌های اخیر، تصفیه آب با کمک صفحات گرافن مورد توجه محققین قرارگرفته است. در فرایند تصفیه درک مکانیزم عبور آب از گرافن در ابعاد مولکولی و سنجش تأثیر پارامترهای مختلف بر آن، به طراحی بهینه فرایند کمک می‌کند. در این تحقیق، با استفاده از روش دینامیک مولکولی مکانیزم و پارامترهای مؤثر بر عبور آب از یک نانوکانال متشکل از صفحات گرافن مورد بررسی قرارگرفته است. در این مطالعه اثر تغییر فشار اعمالی وارده به سیال و ابعاد هندسی کانال بر روی دبی جریان، توزیع چگالی و ضریب نفوذ مورد بررسی قرارگرفته است. نتایج شبیه‌سازی‌ها نشان داد که آب، در هنگام عبور از نانوکانال، ساختار لایه‌ای به خود می‌گیرد. همچنین با افزایش فشار اعمالی، نفوذپذیری، سرعت و میزان آب عبوری از نانوکانال به‌صورت مؤثری افزایش می‌یابد. به‌طوری‌که با افزایش اختلاف فشار از 100 به 500 مگاپاسگال، دبی عبوری بیش از 45 برابر افزایش می‌یابد. نتایج مطالعه همچنین نشان داد که در یک مقطع با مساحت مشخص، دبی نانوکانال مربعی 8/2 بیش از هنگامی است که نسبت اضلاع کانال 4 به 1 باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of water flow from graphene membrane by molecular dynamics simulation

نویسندگان [English]

  • mohammadreza Abdipourfard 1
  • mahdi sahebi 2
1 Department of mechanical engineering
2 Department of mechanical engineering, Qom university of technology, Qom, Iran
چکیده [English]

The pressure-driven water transport inside the nanochannel formed by GE bilayers is studied via molecular dynamics simulation. The drift of water was carried out by using an external force. The effect of changing the external force on the fluid and the geometry of the channel on flow rate, density distribution and diffusion coefficient were studied. The simulations show that water is the layer structure when it passes through the nanochannel. Also, with the increase of external force applied on water molecules, the velocity of the flow has increased. By changing the pressure difference, the permeability and the water flow rate increase. As the pressure difference increases from 100 to 500 MPa, the flow rate increases more than 45 times. The results also showed that in a given cross-sectional area, the square nanochannel has the highest flow rate. This study paves the way for the design and application of graphene-based nanomaterials in nanofiltration and water treatment technologies in the future.

کلیدواژه‌ها [English]

  • Molecular Dynamics
  • Water flow
  • Graphene Membrane
  • Nano Flow
[1] M. Shannon, P. Bohn, M. Elimelech, J. Georgiadis, B. Marinas, and A. Mayes, "Science and technology for water purification in the coming decades", Nature, Vol. 452, March 2008, pp. 301–310.
[2] حدیقه محمدی، ابوالفضل اکبرپور و علی باقری، «مدل‌سازی اندرکنش منابع آب و ارزش افزوده دشت بیرجند »، نشریه مدل­سازی در مهندسی، دوره 16، شماره 55، زمستان 1397، صفحه 279-298.
[3] A. Nicolaï, B. Sumpter, and V. Meunier, "Tunable water desalination across graphene oxide framework membranes", Physical Chemistry Chemical Physics, Vol. 16, No. 18, 2014, pp. 8646-54.
[4] احسان فتوحی بافقی، نادر رهبر و جواد ابوالفضلی اصفهانی، «بهسازی تولید در آب‌شیرین‌کن خورشیدی لوله‌ای با استفاده از مدل‌سازی عددی»، نشریه مدل­سازی در مهندسی، دوره 11، شماره 33، تابستان 1392، صفحه 45-56.
[5] S. Dervin, D. Dionysiou, and S. Pillai, "2D nanostructures for water purification: graphene and beyond", Nanoscale, Vol. 8, No. 8, 2016, pp.15115-31.
[6] مریم نیری و مهدیه نیری، «طراحی و شبیه‌سازی مدار جمع کننده پنج ارزشی جدید مبتنی بر ترانزیستور نانو نوار گرافن» نشریه مدل‌سازی در مهندسی، دوره 11، شماره 33، تابستان 1392، صفحه 45-56.
[7] C. Sun, M. Liu, and B. Bai, "Molecular simulations on graphene-based membranes", Carbon, Vol. 153, No. 1, 2019, pp. 481-94.
[8] G. Cicero, J. Grossman, E. Schwegler, F. Gygi, and G. Galli, "Water confined in nanotubes and between graphene sheets: A first principle study", Journal of the American Chemical Society, Vol. 130, No. 13, February 2008, pp. 1871-8.
[9] D. Cohen-Tanugi, and J. Grossman, "Water desalination across nanoporous graphene", Nano letters, Vol. 12, No. 7, July 2012, pp. 3602-8.
[10] B. Liu, R. Wu, J. Baimova, H. Wu, A. Law, S. Dmitriev, and K. Zhou, "Molecular dynamics study of pressure-driven water transport through graphene bilayers", Physical Chemistry Chemical Physics, Vol. 18, No. 3, 2016, pp. 1886-1896.
[11] R. Devanathan, D. Chase-Woods, Y. Shin, and D. Gotthold, "Molecular dynamics simulations reveal that water diffusion between graphene oxide layers is slow", Scientific reports, Vol. 6, No. 1, July 2016, pp. 1-8.
[12] C. Sun, M. Liu, and B. Bai, "Molecular simulations on graphene-based membranes", Carbon, Vol. 153, November 2016, pp. 481-94.
[13] W. Cao, J. Wang, and M. Ma, "Water diffusion in wiggling graphene membranes", The journal of physical chemistry letters, Vol. 10, No. 22, November 2019, pp. 7251-8.
[14] Z. Zhao, R. Zhou, and C. Sun, "Molecular dynamics study of water diffusivity in graphene nanochannels", International Journal of Thermophysics, Vol. 41, No. 6, June 2020, pp. 1-2.
[15] C. Sun, R. Zhou, Z. Zhao and B. Bai, "Unveiling the hydroxyl-dependent viscosity of water in graphene oxide nanochannels via molecular dynamics simulations", Chemical Physics Letters, Vol. 778, September 2021, pp. 138808.
[16] C. Chen, L. Jia, J. Li, L. Zhang, L. Liang, E. Chen, Z. Kong, X. Wang, W. Zhang, JW. Shen, "Understanding the effect of hydroxyl/epoxy group on water desalination through lamellar graphene oxide membranes via molecular dynamics simulation", Desalination, Vol. 491, October 1 2020, pp. 114560.
[17] B. Zheng, Y. Tian, S. Jia, X. Zhao, H. Li, "Molecular dynamics study on applying layered graphene oxide membranes for separating cadmium ions from water", Journal of Membrane Science, Vol. 603, May 2020, pp. 117996.
[18] S. Plimpton, "Fast parallel algorithms for short-range molecular dynamics", Journal of Computational Physics, Vol. 117, No. 1, 1995, pp. 1–19.
[19] W. Jorgensen, J. Madura, and C. Swenson, "Optimized intermolecular potential functions for liquid hydrocarbons", Journal of the American Chemical Society, Vol. 106, No. 22, October 1984, pp. 6638-46.
[20] J. MacKerell, D. Bashford, M. Bellott, and R. Dunbrack, J. Evanseck, M. Field, S. Fischer, J. Gao, H. Guo, S. Ha, and D. McCarthy, "All-atom empirical potential for molecular modeling and dynamics studies of proteins", The journal of physical chemistry B, Vol. 102, No. 18, April 1998, pp. 3586-616.
[21] D. Tildesley, and M. Allen, Computer simulation of liquids, Clarendon Press, 1987.
[22] F. Zhu, E. Tajkhorshid, and K. Schulten, "Pressure-induced water transport in membrane channels studied by molecular dynamics", Biophysical journal, Vol. 83, No. 1, July 2002, pp. 154-160.
[23] P. Waggoner, and H. Craighead, "Micro-and nanomechanical sensors for environmental, chemical, and biological detection", Lab on a Chip, Vol. 7, No. 10, 2007, pp. 1238-1255.
[24] L. Wang, R. Dumont, and J. Dickson, "Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure", The Journal of chemical physics, Vol. 137, No. 4, July 2012, pp. 044102.
[25] J. Goldsmith, and C. Martens, "Molecular dynamics simulation of salt rejection in model surface-modified nanopores", The Journal of Physical Chemistry Letters, Vol. 1, No. 2, January 2010, pp. 528-35.
[26] J. Hansen, and I. McDonald, Theory of simple liquids: with applications to soft matter, Academic Press, 2013.
[27] مهدی صاحبی بهنمیری و احمدرضا عظیمیان، «بررسی مکانیزم جریان خزش گرمایی در نانولوله‌ها به وسیله روش دینامیک مولکولی»، مهندسی مکانیک مدرس، دوره 15، شماره 10، زمستان ۱۳۹۴، صفحه ۲۲۵-۲۳۲.
[28] A. Berezhkovskii, and G. Hummer, "Single-file transport of water molecules through a carbon nanotube", Physical review letters, Vol. 89, No. 6, July 2002, pp. 064503.
[29] B. Liu, R. Wu, J. Baimova, H. Wu, A. Law, S. Dmitriev, and K. Zhou, "Molecular dynamics study of pressure-driven water transport through graphene bilayers", Physical Chemistry Chemical Physics, Vol. 18, No. 3, 2016, pp. 1886-1896.