[1] P. Mullinger, B. Jenkins, “Industrial and process furnaces principles”, design and operation, First edition, Elsevier, 2008.
[2] نکیسا یعقوبی، سیاوش سیدنژادیان و رامین مغرضی، «سینتیک و پدیدههای انتقال و جفت شدن اکسایشی متان: مدلسازی CFD در مقیاس دانه ای»، مجله مدلسازی در مهندسی، دوره 12 ،شماره 39 ،زمستان 1393 ،صفحه 123-141.
[3] سید حسین حسینی و اشکان محصلی، «مطالعه انتقال حرارت از دیواره بستر حبابی گاز-جامد به ذرات جامد درون آن به کمک دینامیک سیالالت محاسباتی»، مجله مدلسازی در مهندسی، دوره 14 ،شماره 46 ،پاییز 1395 ،صفحه 123-136.
[4] رحمان زینالی، کامران قاسم زاده و علیرضا بهروز سرند، «مدلسازی عملکرد غشای نانوساختار گرافنی جهت جداسازی هیدروژن به کمک روش دینامیک سیالات محاسباتی»، دوره 16، شماره 55، زمستان 1397، صفحه 77-86.
[5] T. Taha, and Z. F. Cui, “CFD modelling of slug flow in vertical tubes”, Chemical Engineering Science, Vol. 61, 2006, pp. 676-687.
[6] C. M. Schietekat, M. M. Van Geothem, K. M. Van Geem, and G.B. Marin, “Swirl flow tube reactor technology: An experimental and computational fluid dynamics study”, Chemical Engineering Journal, Vol. 238, 2014, pp. 56-65.
[7] B. C. Nguyen, Q. V. Pham, M. G. Normah, and J. T. Oh, “Convective heat transfer characteritics of single phase liquid in multiport minichannel tube: Experiment and CFD simulation”, Energy Procedia, Vol. 75, 2015, pp. 3180-3185.
[8] M. Landfahrer, R. Prieler, B. Mayr, H. Gerhardter, R. Schongrundner, R. Klarner, and C. Hochenauer, “Development of a numerically efficient CFD model to predict transient temperature distribution of mother tubes moving translative and rotative through a gas fired furnace”, Applied Thermal Engineering, Vol. 123, 2017, pp. 290-300.
[9] Y. L. Han, R. Xiao, and M. Y. Zhang, “Combustion and pyrolysis reactions in a naphtha cracking furnace”, Chem. Eng. Technol, Vol. 29, 2006, pp. 112–120.
[10] R. Vuthaluru, and H. B. Vuthaluru, “Modeling of a wall fired furnace for different operating conditions using FLUENT”, Fuel Process, Technol., Vol. 87, 2006, pp. 633–639.
[11] A. Gomez, N. Fueyo, and L. Ignacio Diez, “Modelling and simulation of fuid flow and heat transfer in the convective zone of a power-ganeration boiler”, Applied Thermal Engineering, Vol. 28, 2008, pp. 532-546.
[12] E. Keshavarz, D. Toghraie, and M. Haratian, “Modeling industrial scale reaction furnace using computational fluid dynamics: A case study in Ilam gas treating plant”, Applied Thermal Engineering, Vol. 123, 2017, pp. 277-289.
[13] Z. Fang, T. Qiu, and W. Zhou, “coupled simulation zonal firebox model and detailed kinetic reactor model in an industrial ethylene cracking furnace”, Chines Journal of Chemical Engineering, Vol. 25, 2017, pp. 1091-1100.
[14] A. Haghighieh Asl, and M. Sadr Ameli, “Development of thermal models to simulate the radiation section of thermal furnaces”, Master Thesis, Tarbiat Modares University, Faculty of Engineering, 1995.
[15] Z. S. Hosseini, M. Farsi, and M. Rahimpour, “Dynamic modeling and multi-objective optimization of naphtha heat failure furnace for ethylene production considering the inhibitory effect of coke deposition”, M.Sc. Thesis, Shiraz University, Faculty of Chemical Engineering, 2016.
[16] H. Hosseinzadeh, and N. Rezazadeh, “Evaluation of two-equation turbulence models in the discussion of heat transfer in heat treatment furnaces”, Cement, 2016, pp. 17-28.
[17] M. Raouf, M. Farsi, P. Sotoudeh, and M. R. Rahimpour, “Simulation and Optimization of 2,1 Dichloroethane Heat Fracture Furnace”, M.Sc. Thesis, Shiraz University, Faculty of Chemical, Oil and Gas Engineering, 2018.
[18] R. Firoozi, and H. Nazif, “Reducing the heat loss of natural gas dehumidification furnace by combining methods of exergy analysis and computational fluid dynamics (CFD) (Case study: Furnace Unit 104 of Parsian Gas Refining Company)”, M.Sc. Thesis, Imam International University Khomeini (RA) Faculty of Engineering, 2019.
[19] M. Landfahrer, R. Prieler, B. Mayr, H. Gerhardter, R. Schongrundner, R. Klarner, and C. Hochenauer, “Development of a numerically efficient CFD model to predict transient temperature distribution of mother tubes moving translative and rotative through a gas fired furnace”, Applied Thermal Engineering, Vol. 123, 2017, pp. 290-300.