[1] J. Tong, L. Y. M. Tobing, Y. Luo, D. Zhang, and D. H. Zhang, “Single plasmonic structure enhanced dual-band room temperature infrared photodetection”, Scientific Reports, Vol. 8, No. 1, 2018, pp. 1–9.
[2] A. Rogalski, “HgCdTe infrared detector material: history, status and outlook,” Reports on Progress inPhysics, Vol. 68, No. 10, 2005, p. 2267.
[3] J. Hwang et al., “Plasmonic-Layered InAs/InGaAs Quantum-Dots-in-a-Well Pixel Detector for Spectral-Shaping and Photocurrent Enhancement”, Nanomaterials, Vol. 10, No. 9, 2020, p. 1827.
[4] J. Sun, M. Han, Y. Gu, Z. Yang, and H. Zeng, “Recent Advances in Group III–V Nanowire Infrared Detectors”, Advanced Optical Materials, Vol. 6, No. 18, 2018, p. 1800256.
[5] C. -C. Chang, Y. D. Sharma, Y. -S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. -Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots”, Nano Letters, Vol. 10, No. 5, 2010, pp. 1704–1709.
[6] C. Shi, Y. Dong, and Q. Li, “High-Performance Nonequilibrium InSb PIN Infrared Photodetectors”, IEEE Transcation on Electron Devices, Vol. 66, No. 3, 2019, pp. 1361–1367.
[7] X. Luo, X. Zhai, L. Wang, and Q. Lin, “Enhanced dual-band absorption of molybdenum disulfide using a plasmonic perfect absorber”, Optics Express, Vol. 26, No. 9, 2018, pp. 11658–11666.
[8] C. Liang, Z. Yi, X. Chen, Y. Tang, Y. Yi, Z. Zhou, X. Wu, z. Huang, Y. Yi, and G. Zhang, “Dual-band infrared perfect absorber based on a Ag-dielectric-Ag multilayer films with nanoring grooves arrays”, Plasmonics, Vol. 15, No. 1, 2020, pp. 93–100.
[9] C. Guo, J. Zhang, W. Xu, K. Liu, X. Yuan, S. Qin, and Z. Zhu, “Graphene-based perfect absorption structures in the visible to terahertz band and their optoelectronics applications”, Nanomaterials, Vol. 8, No. 12, 2018, p. 1033.
[10] Y. Zhang, D. Meng, X. Li, H. Yu, J. Lai, Z. Fan, and C. Chen, “Significantly enhanced infrared absorption of graphene photodetector under surface-plasmonic coupling and polariton interference”, Optics Express, Vol. 26, No. 23, 2018, pp. 30862–30872.
[11] H. Huang, F. Wang, Y. Liu, S. Wang, and L.-M. Peng, “Plasmonic enhanced performance of an infrared detector based on carbon nanotube films”, ACS Applied Materials Interfaces, Vol. 9, No. 14, 2017, pp. 12743–12749.
[12] M. Xiong, D. Su, H. -L. Zhou, J. -Y. Wu, S. Iqbal, X. -Y. Zhang, and T. Zhang, “Plasmonic enhanced mid-infrared InAs/GaSb superlattice photodetectors with the hybrid mode for wavelength-selective detection”, AIP Advanced, Vol. 9, No. 8, 2019, p. 85121.
[13] M. Kopytko, W. Gawron, A. Kębłowski, D. Stępień, P. Martyniuk, and K. Jóźwikowski, “Numerical analysis of HgCdTe dual-band infrared detector”, Optical and Quantum Electronics, Vol. 51, No. 3, 2019, pp. 1–8.
[14] G. Kang, I. Vartiainen, B. Bai, and J. Turunen, “Enhanced dual-band infrared absorption in a Fabry-Perot cavity with subwavelength metallic grating”, Optics Express, Vol. 19, No. 2, 2011, pp. 770–778.
[15] J. Rosenberg, R. V Shenoi, S. Krishna, and O. Painter, “Design of plasmonic photonic crystal resonant cavities for polarization sensitive infrared photodetectors”, Optics Express, Vol. 18, No. 4, 2010, pp. 3672–3686.
[16] Y. Zhang, A. Haddadi, A. Dehzangi, R. Chevallier, and M. Razeghi, “Suppressing Spectral Crosstalk in Dual-Band Long-Wavelength Infrared Photodetectors With Monolithically Integrated Air-Gapped Distributed Bragg Reflectors”, IEEE Journal of Quantum Electronics, Vol. 55, No. 1, 2018, pp. 1–6.
[17] H. Kang et al., “Near‐Infrared SERS Nanoprobes with Plasmonic Au/Ag Hollow‐Shell Assemblies for In Vivo Multiplex Detection,” Advanced Functional Materials, Vol. 23, No. 30, 2013, pp. 3719–3727.
[18] B. Feng, J. Zhu, B. Lu, F. Liu, L. Zhou, and Y. Chen, “Achieving infrared detection by All-Si plasmonic hot-electron detectors with high detectivity”, ACS Nano, Vol. 13, No. 7, 2019, pp. 8433–8441.
[19] M. Bashirpour, J. Poursafar, M. Kolahdouz, M. Hajari, M. Forouzmehr, M. Neshat, H. Hajihoseini, M. Fathipour, Z. Kolahdouz, and G. Zhang, “Terahertz radiation enhancement in dipole photoconductive antenna on LT-GaAs using a gold plasmonic nanodisk array”, Optics and Laser Technology, Vol. 120, 2019, p. 105726.
[20] N. C. Das, and K. K. Choi, “Gold plasmonic material for enhanced Hg1–xCdxTe infrared absorption”, AIP Advances, Vol. 9, No. 10, 2019, p. 105021.
[21] M. Bashirpour, S. Ghorbani, M. Kolahdouz, M. Neshat, M. Masnadi-Shirazi, and H. Aghababa, “Significant performance improvement of a terahertz photoconductive antenna using a hybrid structure”, RSC Advances, Vol. 7, No. 83, 2017, pp. 53010–53017.
[22] J. Poursafar, M. Bashirpour, M. Kolahdouz, A. V. Takaloo, M. Masnadi-Shirazi, and E. Asl-Soleimani, “Ultrathin solar cells with Ag meta-material nanostructure for light absorption enhancement”, Solar Energy, Vol. 166, 2018, pp. 98–102.
[23] K. Zhou, Q. Cheng, L. Lu, B. Li, J. Song, and Z. Luo, “Dual-band tunable narrowband near-infrared light trapping control based on a hybrid grating-based Fabry–Perot structure”, Optics Express, Vol. 28, No. 2, 2020, pp. 1647–1656.
[24] R. Stanley, “Plasmonics in the mid-infrared”, Nature Photonics, Vol. 6, No. 7, 2012, pp. 409–411.
[25] S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, Al x Ga1− x As, and In1− x Ga x As y P1− y”, Journal of Applied Physics, Vol. 66, No. 12, 1989, pp. 6030–6040.
[26] S. A. Maier, Plasmonics - Fundamentals, and Applications. Springer, 2007.
[27] P. Karpinski, and A. Miniewicz, “Surface Plasmon Polariton Excitation in Metallic Layer Via Surface Relief Gratings in Photoactive Polymer Studied by the Finite-Difference Time-Domain Method”, Plasmonics, Vol. 6, No. 3, 2011, pp. 541–546.