طراحی و شبیه سازی یک آشکارساز نوری مبتنی بر نقاط کوانتومی با اتصالات انتخابگر برای تشخیص همزمان چند طول موج نوری

نوع مقاله : مقاله برق

نویسنده

دانشکده مهندسی برق و کامپیوتر، دانشگاه محقق اردبیلی

چکیده

در این کار، یک آشکارساز نوری جدید مبتنی بر نقاط کوانتومی با اتصالات دارای قابلیت انتخاب حامل های تولید شده، برای تشخیص همزمان چند طول موج نوری معرفی و شبیه سازی شده است. در طراحی لایه فعال از نقاط کوانتومی با اندازه های مختلف استفاده گردیده است. هر یک از اندازه ها، برای تشخیص یک طول موج خاص تخصیص داده شده است. در این آشکار ساز برای تفکیک حامل های تولیدی توسط هر طول‌موج، اتصالات انتخابگر انرژی با استفاده از دیواره های کوانتومی طراحی گردیده است. به کمک نرم‌افزار کامسول یک ساختار سه بعدی شامل یک آرایه‌ی 4×4 از نقاط کوانتومی بزرگ و یک آرایه‌ی 3×3 از نقاط کوانتومی کوچک به صورت تودرتو شبیه‌سازی شده و ترازهای انرژی و توابع موج برای آن‌ها استخراج شده است. سپس به کمک نرم افزار متلب از روی ترازهای انرژی و توابع موج ویژگی های اپتیکی مانند ضریب جذب محاسبه شده است. تکنیک معرفی شده آشکارسازهای نوری جدیدی را معرفی می‌کند که می توانند تشخیص همزمان چندین طول موج را با یک افزاره انجام دهند. برای تشخیص طول‌موج‌های بزرگ تر، گذارهای درون نواری و برای تشخیص طول موج های کوچک تر، گذار های بین نواری کوانتومی مورد استفاده قرار گرفته است. در این‌کار اتصالات مناسب با استفاده از دیواره‌های کوانتومی طراحی و به ناحیه فعال با نقاط کوانتومی مناسب متصل شده‌اند. ضریب جذب نوری برای آرایه ای از نقاط کوانتومی با دو اندازه مختلف شبیه سازی شده است. لازم به ذکر است که مسیرهای جریان مستقل برای هر طول موج طراحی شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Design and simulation of a quantum dot-based optical using selective energy contacts to simultaneous detection of multi-wavelengths

نویسنده [English]

  • Hamid Heidarzadeh
Department of Electrical and Computer Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.
چکیده [English]

In this paper, selective energy contacts are used to design a multi-wavelength optical photodetector. Here, 3D spherical shape quantum dots with quantum well-based energy selective contacts are simulated. The introduced technique helps us to design a novel photodetector that can simultaneously detect multi-wavelengths. These wavelengths can include several ultraviolet wavelengths or several infrared wavelengths or a combination of them. This detection can be achieved by intera-band and inter-band transitions in quantum dot-based Super-lattices. To detect higher wavelengths, intra-band transmissions and for lower wavelengths, inter-band transmissions can be used. In this work, suitable energy selective contacts are designed using quantum wells. Also, quantum dots with different radii are used to detect multi-wavelengths simultaneously. Finally, as an application of this structure, the results have been presented for two quantum dots capable of simultaneous detection of two UV radiations, simultaneously. The detector can be further improved by applying several quantum dots with different sizes, shapes and materials and using more ESCs.

کلیدواژه‌ها [English]

  • Optical photodetector
  • Quantum dots
  • Simultaneous Detection
  • Selective Energy contacts
  • Wavelength
  • Optoelectronic
[1] حمید بهادر، «سنسور ضریب شکست بسیار حساس جدید با استفاده از کوپلینگ عمودی قوی در نانوساختار پلاسمونیکی دیسک بیضی شکل روی حلقه بیضی شکل»، مجلة مدل‌سازی در مهندسی، دورة 19، شمارة 64، بهار 1400، صفحة 64- 75.
] 2[ سعید علیائی و احمد محب‌زاده، «نویزها طراحی و مدل‌سازی حسگر زیستی مبتنی بر نانو تشدیدگر کریستال فوتونی»، مجلة مدل‌سازی در مهندسی، دورة 15، شمارة 51، زمستان 1396، صفحة 351- 358.
[3] سعید رحیمی، سهیل رضازاده مفردنیا، بهنام راسخ و سید عباس شجاع‌الساداتی، «شبیه‌سازی و بررسی عملکرد پارامترهای مختلف حسگر مبتنی بر غشای سیلیکونی جهت تشخیص متان محلول در فرایند تخمیر»، مجلة مدل‌سازی در مهندسی، دورة 17، شمارة 58، زمستان 1398، صفحة 329- 336.
[4] سید سعید حاجی نصیری، « تحلیل پاسخ زمانی و نایکوئیست لیزر خودسامانده نقطه کوانتومی InGaAs-GaAs با استفاده از مدل تابع انتقال»، مجلة مدل‌سازی در مهندسی، دورة 17، شمارة 58، پاییز 1398، صفحة 295- 303.
[5] P. Wang, S. Liu, W. Luo, and H. Fang, "Arrayed Van Der Waals Broadband Detectors for Dual‐Band Detection", Advanced Materials, Vol. 29, No.16, 2017, pp.16044391-16044398.
[6] Z. Xie, Z. Deng, X. Zou, and B. Chen, "InP-based near infrared/extended-short wave infrared dual-band photodetector" IEEE Photonics Technology Letters, Vol. 32, No.16, 2020, pp.1003-1006.
[7] J.A. Jayasinghe, "Multiband detectors and application of nanostructured anti-reflection coatings for improved efficiency.", Georgia State university, Vol.12, No. 1, 2012, pp.1-10.
[8] T. Chen, X. Yi, L. Li, and R. Minasian, "Single passband microwave photonic filter with wideband tunability and adjustable bandwidth”, Optics letters, Vol. 37. No. 22, pp.4699-4701.
[9] T. Bauer, H. Thome, and T. Eisenhammer, "Bandpass filter arrays patterned by photolithography for multispectral remote sensing, In Sensors, Systems, and Next-Generation Satellites", International Society for Optics and Photonics, Vol. 9241, No. 10, 2014, pp. 924111-924115.
[10] S. Cai, X. Xu, W. Yang, J. Chen, and X. Fang, "Materials and designs for wearable photodetectors", Advanced Materials, Vol. 31, No. 18, 2019, pp. 18081381-1808138115.
[11] M. Long, P. Wang, H. Fang, and W. Hu, "Progress, challenges, and opportunities for 2D material-based photodetectors", Advanced Functional Materials, Vol. 29, No. 19, 2019, pp. 18038071-18038075.
[12] S. Coe-Sullivan, "Quantum dot developments," Nature Photonics, Vol. 3, No. 6, 2009, pp. 315-316.
[13] M. M. Ackerman, X. Tang, and P. Guyot-Sionnest, "Fast and sensitive colloidal quantum dot mid-wave infrared photodetectors", ACS Nano, Vol. 12, No. 7, 2018, pp. 7264-7271.
[14] A. De Iacovo, C. Venettacci, L. Colace, L. Scopa, and S. Foglia, "PbS Colloidal Quantum Dot Photodetectors operating in the near infrared", Scientific reports, Vol. 6, No. 1, 2016, pp. 1-9.
[15] S. Baskoutas and A. F. Terzis, "Size-dependent band gap of colloidal quantum dots", Journal of applied physics, Vol. 99, No. 1, 2006, pp. 0137081-01370815.
[16] S. Maimon, E. Finkman, G. Bahir, S. Schacham, J. Garcia, and P. M. Petroff, "Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectors", Applied Physics Letters,  Vol. 73, No. 14, 1998, pp. 2003-2005.
[17] X. Yan, X. Zhang, J. Li, Y. Wu, J. Cui, and X. Ren, "Fabrication and optical properties of GaAs/InGaAs/GaAs nanowire core–multishell quantum well heterostructures," Nanoscale, Vol. 7, No. 3, 2015, pp. 1110-1115.
[18] M. Hamer, "Gate-defined quantum confinement in InSe-based van der Waals heterostructures", Nano Letters, Vol. 18, No. 6, 2018, pp. 3950-3955.
[19] S. Liu, "Self-assembled Al nanostructure/ZnO quantum dot heterostructures for high responsivity and fast UV photodetector", Nano-micro letters, Vol. 12, 2020, pp. 1-13.
[20] Q. Xu, J. Hu, and X. Wang, " On-chip Ge, InGaAs, and colloidal quantum dot photodetectors: comparisons for application in silicon photonics", Journal of the Optical Society of America A, Vol. 38, No. 1, 2021, pp.194-200.
[21] S. Vichi, S. Bietti, and A. Khalili, "Droplet epitaxy quantum dot based infrared photodetectors," Nanotechnology, Vol. 31, No. 24, 2020, pp. 245203-245205.
[22] Y. Shoji, K. Watanabe, and Y. Okada, "Photoabsorption improvement in multi-stacked InGaAs/GaAs quantum dot solar cell with a light scattering rear texture", Solar Energy Materials and Solar Cells, Vol. 204, 2020, pp. 1102161-1102165.
[23] M. Liao, S. Chen, and Z. Liu, "Low-noise 1.3 μm InAs/GaAs quantum dot laser monolithically grown on silicon", Photonics Research, Vol. 6, No. 11, 2018, pp. 1062-1066.
[24] X. Tang, M. M. Ackerman, M. Chen, and P. G. Sionnest, "Dual-band infrared imaging using stacked colloidal quantum dot photodiodes", Nature Photonics, Vol. 13, No. 4, 2019, pp. 277-282.
[25] S. R. Shriram, "Study on inter band and inter sub-band optical transitions with varying InAs/InGaAs sub-monolayer quantum dot heterostructure stacks grown by molecular beam epitaxy", IEEE Transactions on Nanotechnology, Vol. 19, 2020, pp. 601-608.
[26] L. M. Krüger, "High-speed interband cascade infrared photodetectors: photo-response saturation by a femtosecond oscillator", Optics Express, Vol. 29, No. 9, 2021, pp. 14087-14100.
[27] V. Ryzhii, "Comparison of intersubband quantum-well and interband graphene-layer infrared photodetectors," IEEE Journal of Quantum Electronics, Vol. 54, No. 2, 2018, pp. 1-8.
[28] V. Y. Aleshkin, "Interband infrared photodetectors based on HgTe–CdHgTe quantum-well heterostructures", Optical Materials Express, Vol. 8, No. 5, 2018, pp. 1349-1358.
[29] A. Mellor, A. Luque, I. Tobías, and A. Martí, "The influence of quantum dot size on the sub-bandgap intraband photocurrent in intermediate band solar cells," Applied Physics Letters, Vol. 101, No. 13, 2012, pp. 133909.
[30] Z. Ma et al., "Enhanced detectivity of PbS quantum dots infrared photodetector by introducing the tunneling effect of PMMA," Nanotechnology, Vol. 3, No. 2, 2021, pp. 1955021-1955025.
[31] H. D. Jahromi and A. Zarifkar, "A physical model for quantum wire infrared photodetectors under illumination condition," Optics Communications, Vol. 493, 2021, pp. 1270431-1270435.
[32] A. Rostami, R. O. Rezayee, H. R. Saghai, R. Yadipour, and H. Baghban, "A dual-color IR quantum cascade photodetector with two output electrical signals", IEEE transactions on electron devices, Vol. 58, No. 1, 2010, pp. 165-172.
[33] Y. H. Kang, J. Park, U. H. Lee, and S. Hong, "Effect of the dot size distribution on quantum dot infrared photoresponse and temperature-dependent dark current", Applied physics letters, Vol. 82, No. 7, 2003, pp. 1099-1101.
[34] X. Jiang, S. S. Li, and M. Tidrow, "Study of intersubband transition in quantum dots and quantum dot infrared photodetectors", Physica E: Low-dimensional Systems and Nanostructures, Vol. 5, No. 1, 1999, pp. 27-35.
[35] Y. Liu, "Highly Sensitive CuInS2/ZnS Core–Shell Quantum Dot Photodetectors", ACS Applied Electronic Materials, Vol. 3, No. 3, 2021,  pp. 1236-1243.