هماهنگی رله‌های اضافه جریان در ریزشبکه‌ها با توجه به ورود و خروج منابع

نوع مقاله : مقاله برق

نویسندگان

1 دانشگاه شهرکرد

2 ، دانشکده مهندسی برق- دانشگاه شهرکرد- شهرکرد- ایران

چکیده

در این مقاله به تنظیم رله‌های اضافه جریان جهتی با توجه به ورود و خروج منابع در ریز شبکه پرداخته شده است. تغییر در ساختار شبکه باعث تغییر در عملکرد رله ها می‌گردد، لذا سبب ایجاد قطعی و در نتیجه کاهش قابلیت اطمینان در شبکه خواهند شد. در روش بکار رفته با در نظر گرفتن تزریق یک جریان مجازی مطابق با منبع جدا شده از سیستم سعی شده‌است که تنظیمات اولیه رله‌های اضافه جریان جهتی تغییر نکند. براین اساس با استفاده از یک بستر مخابراتی کلیه اطلاعات مورد نیاز به رله ها ارسال می-گردد و رله‌ها با توجه به وجود یا عدم وجود منابع یک مقدار مجازی برابر با مقدار جریان اتصال کوتاه منابع جدا شده یا اضافه شده را به صورت نرم افزاری دریافت می‌کنند و این باعث می‌شود که تنظیمات رله ها نسبت به حالت اولیه که کلیه منابع در سرویس قرار دارند تغییری نکند. روش به کار رفته در یک ریزشبکه IEC با انواع تولید پراکنده و در حالات مختلف عملکردی و با توجه به حضور یا عدم حضور منابع تغذیه کننده اتصال کوتاه، مورد بررسی قرار گرفته‌است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Coordination of overcurrent relays in microgrids according to the input and output of resources

نویسندگان [English]

  • saeed abazari 1
  • parviz omidi 2
1 university of shahrekord
2 Electrical Engineering, sharekord University, Sharekord, Iran
چکیده [English]

In this paper, the directional overcurrent relays are adjusted according to the input and output of resources in the microgrid. Changes in the network structure will change the performance of the relays, so they will cause interruptions and thus reduce the reliability of the network. In the method used, by considering the injection of a virtual current according to the source isolated from the system, an attempt has been made not to change the initial settings of the directional overcurrent relays. Accordingly, using a telecommunication platform, all the required information is sent to the relays, and the relays, due to the presence or absence of sources, have a virtual value equal to the amount of short-circuit current of the separated or added sources in a soft way. They receive hardware, and this prevents the relay settings from changing to the original state where all resources are in service. The method used in an IEC microgrid with different generation types and in different operating modes and with respect to the presence or absence of short circuit power supplies, has been investigated.

کلیدواژه‌ها [English]

  • Virtual current
  • Overcurrent relay
  • Functional mode
  • Structural mode
  • Dynamic changes
[1] W. Lin, X. Jin, H. Jia, Y. Mu, T. Xu, X. Yu, "Decentralized optimal scheduling for integrated community energy system via consensus-based alternating direction method of multipliers," Applied Energy, vol 302, No. 6, July 2021, pp. 117-129.
[2] M. Roustaee and A. Kazemi, "Multi-objective stochastic operation of multi-microgrids constrained to system reliability and clean energy based on energy management system," Electric Power Systems Research, vol. 194, May 2021, pp. 106-120.
[3] P. H. A. Barra, D. V. Coury, and R. A. S. Fernandes, " A survey on adaptive protection of microgrids and distribution systems with distributed generators. " Renewable and Sustainable Energy Reviews, Vol. 118, February 2020, pp. 109-124 .
[4] S. C. Vegunta, et al. "AC Microgrid Protection System Design Challenges-A Practical Experience." Energies Vol 14, No. 7,  2016, pp. 1-23.
[5] J. Sahebkar Farkhani, M. Zareein, A. Najafi, R. Melicio, and E. M. Rodrigues, "The power system and microgrid protection-A Review," Applied Sciences, vol. 10, No. 22, 2020, p. 8271.
[6] P. T. Manditereza, R. Bansal, A. Najafi, R. Melicio, and E. M. Rodrigues, " Renewable distributed generation: The hidden challenges–A review from the protection perspective." Renewable and Sustainable Energy Reviews, Vol 58, May 2016, pp. 1457-1465.
[7] H. Emanuel, J. Bromboch, R. Rosso, K. Pierros, " Requirements for control strategies of grid-connected converters in the future power system." IET Renewable Power Generation vol. 14, No. 8, May 2020, pp.1288-1295.
]8[ مهدی قاضی زاده احسایی ، احسان خوب ، مهرداد زندی دره غریبی "بکارگیری محدودساز جریان خطا برای کاهش زمان عملکرد رله ها" دوره 16، شماره 53، تابستان 1397، صفحه 171-181.
]8[ محمود لشگری ، سید محمد شهرتاش ، " حفاظت فوق سریع باسبار مبتنی بر تبدیل آنالین زمان-زمان" دوره  16 ، شماره  53 ، تابستان 1397 ، صفحه 135 - 147.
]8[ زهرا مروج ، مجتبی قرجه لو ،کاظم مظلومی" هماهنگی بهینه رله‌های دیستانس و اضافه جریان جهتی با استفاده ازالگوریتم ژنتیک " دوره 15، شماره 48، بهار 1396، صفحه 201-216.
[11] S. A. Hosseini, H. A. Abyaneh, S. H. H. Sadeghi, F. Razavi, A. Nasiri, "An overview of microgrid protection methods and the factors involved. Renew." Sustain. Energy Rev. vol. 64, October 2016, pp 174–186.
[12] V. Telukunta, J. Pradhan, A.  Agrawal, M. Singh, S. G. Srivani, "Protection challenges under bulk penetration of renewable energy resources in power systems: A review." CSEE J. Power Energy Syst. Vol. 3(4) , December 2017, pp. 365–379.
[13] S. Katyara, L. Staszewski, Z.  Leonowicz, "Protection Coordination of Properly Sized and Placed Distributed Generations—Methods, Applications and Future Scope." Energies  vol. 11(10), October 2018 pp.26-72.
[14] J. D. J. Jaramillo-Serna, J. M. López-Lezama, "Alternative Methodology to Calculate the Directional Characteristic Settings of Directional Overcurrent Relays in Transmission and Distribution Networks" Energies vol. 12(19), October 2019, pp. 37-79.
[15] A. C. Z. de Souza, M. Castilla, "Microgrids Design and Implementation." Springer: Berlin/Heidelberg, Germany, 2019.
[16] M. Gomes, P. Coelho, C. Moreira, "Microgrid Protection Schemes. In Microgrids Design and Implementation." Springer: Berlin/Heidelberg, Germany , 2019, pp. 311–336.
[17] S. M. Saad, N. El-Naily, F. A. Mohamed, "A new constraint considering maximum PSM of industrial overcurrent relays to enhance the performance of the optimization techniques for microgrid protection schemes." Sustain. Cities Soc Vol 44, January 2019, pp.445-457.
[18] N. El-Naily, S. M. Saad, T. Hussein, F.A. Mohamed, "A novel constraint and non-standard characteristics for optimal overcurrent relays coordination to enhance microgrid protection scheme." IET Gener. Transm. Distrib. Vol 13(6), January2019, pp. 780–793.
[19] H. H. Zeineldin, Y. A, R. I. Mohamed, V. Khadkikar, V. R. Pandi, "A protection coordination index for evaluating distributed generation impacts on protection for meshed distribution systems." IEEE Trans. Smart Grid  Vol. 4(3), September 2013, pp.1523–1532.
[20] J. Ehrenberger, J.  Švec, "Directional Overcurrent Relays Coordination Problems in Distributed Generation Systems." Energies Vol. 10, September 2017, pp.41-52.
[21] K. A. Saleh, H. H. Zeineldin, E. F. El-Saadany, "Optimal Protection Coordination for Microgrids Considering N −1 Contingency." IEEE Trans. Ind. Inf. vol. 30, No. 2, 2015., pp.537 – 544.
[22] H. R. Baghaee, M. Mirsalim, G. B. Gharehpetian, H. A. Talebi, "MOPSO/FDMT-based Pareto-optimal solution for coordination of overcurrent relays in interconnected networks and multi-DER microgrids." IET Gener.Transm. Distrib. Vol.12(12), July 2018, pp. 2871–2886.
[23] M. N. “Alam, Adaptive protection coordination scheme using numerical directional overcurrent relays.” IEEE Trans. Ind. Inf., Vol. 15(1), May 2018, pp. 64–73.
[24] H. Lin, K. Sun, Z. H. Tan, C. Liu, J. M. Guerrero, J. C. Vasquez, “Adaptive protection combined with machine learning for microgrids.” IET Gener. Transm. Distrib. Vol. 13, 2019, pp. 770–779.
[25] T. S. Ustun, C. Ozansoy, A. Zayegh, “Modeling of a Centralized Microgrid Protection System and Distributed Energy Resources According to IEC 61850-7-420.” IEEE Trans. Power Syst. Vol. 27(3),  August 2012, pp. 1560–1567.
[26] H. C. Kiliçkira pp.n, I. Sengör, H. Akdemir, B. Kekezo˘glu, O. Erdinç, N. G. Paterakis,  “Power system protection with digital overcurrent relays: A review of non-standard characteristics.” Electr. Power Syst. Res. Vol. 164, , November 2018, pp. 89–102.
[27] B. Fani, H. Bisheh, I. Sadeghkhani, “Protection coordination scheme for distribution networks with high penetration of photovoltaic generators.” IET Gener. Transm. Distrib. Vol. 12, 2017, pp. 1802–1814.
[28] V. Telukunta, J. Pradhan, A. Agrawal, M. Singh, and S. G. Srivani, "Protection challenges under bulk penetration of renewable energy resources in power systems: A review," CSEE journal of power and energy systems, Vol. 3, No. 4, 2017 pp. 365-379.
[29] M. R. Islam and H. A. Gabbar, "Analysis of Microgrid protection strategies," International Conference on Smart Grid (SGE), 2012: IEEE, pp. 1-6.
[30] S. Sarangi, B. K. Sahu, and P. K. Rout, "Review of distributed generator integrated AC microgrid protection: issues, strategies, and future trends," International Journal of Energy Research,Vol. 45(10) April. 2021, pp. 66-79.
[31] S. A. Hosseini, H. A. Abyaneh, S. H. H. Sadeghi, F. Razavi, and A. Nasiri, "An overview of microgrid protection methods and the factors involved," Renewable and Sustainable Energy Reviews, vol. 64, 2016, pp.174-186.
[32] P. Basak, S. Chowdhury, S. H. nee Dey, and S. Chowdhury, "A literature review on integration of distributed energy resources in the perspective of control, protection and stability of microgrid," Renewable and Sustainable Energy Reviews, Vol. 16, No. 8, 2012, pp.174-186.
[33] S. Voima and K. Kauhaniemi, "Technical Challenges of Smart-and Mi pp. crogrids," Renewable Efficient Energy II Conference, Vaasa, Finland, March 2012, pp. 21-22.
[34] Z. Akhtar and M. A. Saqib, "Microgrids formed by renewable energy integration into power grids pose electrical protection challenges," Renewable Energy, vol. 99, July 2016 pp.148-157.
[35] S. Lotfi-fard, J. Faiz, and R. Iravani, "Improved overcurrent protection using symmetrical components," IEEE Transactions on Power Delivery, Vol. 22, No. 2, 2007, Pages 843-850.
[36] J. Nunes and A. Bretas, "A impedance-based fault location technique for unbalanced distributed generation systems," IEEE Trondheim PowerTech, June 2011: IEEE, pp. 1-7.
[37] A. Gururani, S. R. Mohanty, and J. C. Mohanta, "Microgrid protection using Hilbert–Huang transform based-differential scheme," IET Generation, Transmission & Distribution, Vol. 10, No. 15, 2016, pp.3707-3716.
[38] L. Che, M. E. Khodayar, and M. Shahidehpour, "Adaptive Protection System for Microgrids: Protection practices of a functional microgrid system," IEEE Electrification magazine, Vol. 2, No. 1, 2014, pp. 66-80.
[39] M. H. Cintuglu, T. Ma, and O. A. Mohammed, "Protection of autonomous microgrids using agent-based distributed communication," IEEE Transactions on Power Delivery, Vol. 32, No. 1, 2016, pp.351-360.
[40] L. Luo, N. Tai, and G. Yang, "Wide-area protection research in the smart grid," Energy  Procedia, Vol. 16, 2012, pp. 1601-1606.
[41] P. Omidi, S. Abazari, and S. M. Madani. "Optimal Coordination of Directional Overcurrent Relays for Microgrids Using‎ Hybrid Interval Linear Programming-Differential Evolution." Journal of Operation and Automation in Power Engineering “ Vol. 10, No. 2, Aug. 2022, pp. 122-133.
[42] P. P. Bedekar and S. R. Bhide, "Optimum coordination of directional overcurrent relays using the hybrid GA-NLP approach," IEEE Transactions on Power Delivery, Vol. 26, No. 1, 2010. pp. 109-119
[43] S. D. Saldarriaga-Zuluaga, J. M. López-Lezama, and N. Muñoz-Galeano, "Optimal coordination of overcurrent relays in microgrids considering a non-standard characteristic," Energies, Vol. 13, No. 4, 2020, pp.9-22.
[44] H.F. Habib, C. R. Lashway, and O.A. Mohammed. "A review of communication failure impacts on adaptive microgrid protection schemes and the use of energy storage as a contingency." IEEE Transactions on Industry Applications 54.2 (2017): 1194-1207.‏