[1] P.H. Li and S. Pye, "Assessing the benefits of demand-side flexibility in residential and transport sectors from an integrated energy systems perspective", Applied Energy, Vol. 228, October 2018, pp. 965–979.
[2] سید قاسم میربابایی رکنی، مسعود رادمهر و علیرضا ذکریازاده، "مدلسازی مدیریت منابع انرژی پراکنده در ریزشبکه با استفاده از روش توزیع شده "، نشریه مدلسازی در مهندسی، دوره 17، شماره 57، تابستان 1398، صفحه 241- 252.
[3] علیرضا ابراهیمی، عباس دیدبان نوکندی و رضا کیپور، " استراتژی کنترلی نوین در سیستمهای انرژی ترکیبی بادی- خورشیدی برمبنای تعیین محدودههای بهینه شارژ و دشارژ باتریها در بازههای زمانی مختلف"، نشریه مدلسازی در مهندسی، دوره 16، شماره 55، زمستان 1397، صفحه 163- 173.
[4] محمد علیزاده، میثم جعفری نوکندی و یامین سلطان مرادی، "مدلسازی و بهینهسازی مصرف انرژی در خانه هوشمند با حضور ذخیرهساز انرژی، سلول خورشیدی، خودروی برقی و پاسخگویی بار"، نشریه مدلسازی در مهندسی، دوره 17، شماره 57، تابستان 1398، صفحه 215-226.
[5] L. Martirano, G. Parise, and et al, "Aggregation of users in a residential/commercial building managed by a building energy management system (BEMS)", IEEE Transactions on Industry Applications, Vol. 55, No. 1, January-February 2019, pp. 26-34.
[6] F. Pallonetto, S. Oxizidis, and et al, "The effect of time-of-use tariffs on the demand response flexibility of an all-electric smart-grid-ready dwelling", Energy and Buildings, Vol. 128, September 2016, pp. 56-67.
[7] D. Zhang, S. Li, and et al, "An optimal and learning-based demand response and home energy management system", IEEE Transactions on Smart Grid, Vol. 7, No. 4, July 2016, pp. 1790-1801.
[8] I. Sharma, J. Dong, and et al, "A modeling framework for optimal energy management of a residential building", Energy and Buildings, Vol. 130, October 2016, pp. 55-63.
[9] R. Yin, E.C. Kara, and et al, "Quantifying flexibility of commercial and residential loads for demand response using setpoint changes", Applied Energy, Vol. 177, September 2016, pp.149-164.
[10] E. Chatterji, and M. D. Bazilian, "Smart meter data to optimize combined roof-top solar and battery systems using a stochastic mixed integer programming model", IEEE Access, Vol. 8, July 2020, pp. 133843-133853.
[11] Y. Wang, C. Chen, and et al, "Research on resilience of power systems under natural disasters-a review", IEEE Transactions on Power Systems, Vol. 31, No. 2, March 2015, pp. 1604-1613.
[12] M. Panteli, and P. Mancarella, "The grid: Stronger, bigger, smarter?: Presenting a conceptual framework of power system resilience", IEEE Power and Energy Magazine, Vol. 13, No.3, May-June 2015, pp. 58-66.
[13] X. Liu, K. Hou, and et al, "A resilience assessment approach for power system from perspectives of system and component levels", Applied Energy, Vol. 118, June 2020, pp. 105837.
[14] H. Ghasemieh, B.R. Haverkort, and et al, "Energy resilience modelling for smart houses", IEEE Computer Society, Vol. 1, June 2015, pp. 275-286.
[15] F. Hafiz, B. Chen, and et al, "Utilizing demand response for distribution service restoration to achieve grid resiliency against natural disasters", IET Generation, Transmission & Distribution, Vol. 13, March 2019, pp. 2942-2950.
[16] R. Wu and G. Sansavini, "Integrating reliability and resilience to support the transition from passive distribution grids to islanding microgrids", Applied Energy, Vol. 272, August 2020, pp. 115254.
[17] A. Bampoulas, M. Saffari, and et al, "A fundamental unified framework to quantify and characterise energy flexibility of residential buildings with multiple electrical and thermal energy", Applied Energy, Vol. 282, January 2021, pp. 116096.
[18] M. Panteli, and P. Mancarella, "Modeling and evaluating the resilience of critical electrical power infrastructure to extreme weather events", IEEE Systems Journal,Vol. 11, No. 3, September 2015, pp. 1733-1742.
[19] M. Panteli, D. Trakas, and et al, "Boosting the power grid resilience to extreme weather events using defensive islanding", IEEE Transactions on Smart Grid, Vol. 7, No. 6, March 2016, pp. 4732-4742.
[20] J. Najafi, A. Peiravi, and et al, "Power distribution system improvement planning under hurricanes based on a new resilience index", IEEE Access, Vol. 39, May 2018, pp. 592-604.
[21] J. Confrey, A. H. Etemadi, and et al, "Energy Storage Systems Architecture Optimization for Grid Resilience with High Penetration of Distributed Photovoltaic Generation", IEEE Systems Journal, Vol. 14, No. 1, March 2020, pp. 1135-1146.
[22] H. Wang, T. Jin, "Prevention and Survivability for Power Distribution Resilience: A Multi-Criteria Renewables Expansion Model", IEEE Access, Vol. 8, May 2020, pp. 88422-88433.
[23] S. Poudel, A. Dubey, and et al, "Risk-Based Probabilistic Quantification of Power Distribution System Operational Resilience", IEEE Systems Journal, Vol. 14, No. 3, September 2020, pp. 3506-3517.
[24] T. Nguyen, S. Wang, and et al, "Electric Power Grid Resilience to Cyber Adversaries: State of the Art", IEEE Access, Vol. 8, May 2020, pp. 87592-87608.
[25] A. Nasri, A. Abdollahi, and et al, "Multi-stage and resilience-based distribution network expansion planning against hurricanes based on vulnerability and resiliency metrics", International Journal of Electrical Power & Energy Systems, Vol. 136, March 2022, pp.107640.
[26] A. Akrami, M. Doostizadeh, and et al, "Power system flexibility: an overview of emergence to evolution", Journal of Modern Power Systems and Clean Energy, Vol. 7, No. 5, September 2019, pp. 987-1007.
[27] S. Nan, G. Li, and et al, "Optimal residential community demand response scheduling in smart grid", Applied Energy, Vol. 210, January 2018, pp. 1280-1289.
[28] O. Erdinc
, N.G . Paterakis,
and et al, "Smart household operation considering bi-directional EV and ESS utilization by real-time pricing-based DR",
IEEE Transactions on Smart Grid, Vol.6, No. 3, May 2015, pp.1281-1291.
[29] A. Akrami, M. Doostizadeh, and et al, "Power system flexibility: an overview of emergence to evolution", Journal of Modern Power Systems and Clean Energy, Vol. 7, No. 5, September 2019, pp. 987-1007.
[30] S.M. Mohseni-Bonab, A. Rabiee, and et al, "A two-point estimate method for uncertainty modeling in multi-objective optimal reactive power dispatch problem", International Journal of Electrical Power & Energy Systems, Vol. 75, February 2016, pp. 194-204.
[31] P. Huang, M. Lovati, and et al, "A coordinated control to improve performance for a building cluster with energy storage, electric vehicles, and energy sharing considered", Applied Energy, Vol. 268, June 2020, pp. 114983.