برنامه‌ریزی مقید به ریسک توسعه شبکه انتقال در بازارهای رقابتی برق با درنظرگرفتن انرژی تامین نشده و قطع تولید منابع بادی

نوع مقاله : مقاله برق

نویسندگان

1 دانشگاه صنعتی نوشیروانی بایل- دانشکده برق

2 دانشجوی دکتری- دانشکده مهندسی برق و کامپیوتر دانشگاه صنعتی نوسیروانی بابل-بابل- ایران

چکیده

گسترش روزافزون استفاده از منابع بادی جهت تولید انرژی الکتریکی، با توجه به عدم قطعیت آنها، برنامه‌ریزی توسعه شبکه انتقال را با چالش‌های جدیدی مواجه نموده است. قطع تولید بادی ناشی از توسعه نامناسب خطوط انتقال منجر به عدم قابلیت استفاده مطلوب از ظرفیت تولید این منابع می‌گردد. در این مقاله، روشی برای برنامه‌ریزی توسعه شبکه انتقال در بازار برق در حضور منابع بادی با رویکرد همزمان بیشینه‌سازی بهره‌برداری از این منابع با در نظر گرفتن هزینه قطع تولید بادی و نیز کاهش انرژی تامین نشده ارائه شده و در ادامه، مدل ارائه شده با درنظر گرفتن شاخص ریسک توسعه می‌یابد. جهت دست‌یابی به این هدف، از یک مدل دوسطحی تصادفی مقید به ریسک استفاده شده است. در سطح بالا، تصمیمات توسعه شبکه انتقال توسط بهره‌بردار مستقل سیستم (ISO) با هدف کمینه‌سازی هزینه‌ توسعه و هزینه انرژی تامین نشده انتظاری (EENS) اتخاذ می‌گردد. در سطح پایین، مسئله تسویه بازار با هدف بیشینه‌سازی رفاه اجتماعی حل می‌شود. با استفاده از تئوری دوگانی، مدل ارائه شده ابتدا به یک مسئله MPEC تصادفی تبدیل شده و سپس مسئله MILP نهایی استخراج می‌گردد. مدل ارائه شده بر روی شبکه نمونه شش شینه Garver و سیستم تست قابلیت اطمینان IEEE (RTS) تست شده است. نتایج شبیه‌سازی نشان می‌دهد که درنظر گرفتن هزینه قطع تولید بادی منجر به افزایش استفاده از واحدهای بادی و کاهش انرژی تولیدی واحدهای فسیلی شده است که از نقطه نظر زیست محیطی مهم می‌باشد. در عین حال با درنظر گرفتن ریسک، انرژی تولیدی انتظاری منابع بادی کاهش یافته است.

کلیدواژه‌ها


عنوان مقاله [English]

Risk-constrained transmission network expansion planning in competitive electricity markets considering expected energy not supplied and wind curtailment

نویسندگان [English]

  • Taghi Barforoushi 1
  • Reza Heydari 2
1 Babol noshirvani university of technology
2 Faculty of electrical and computer engennering-babol noshirvani university of technology-Babol-Iran
چکیده [English]

The increasing use of wind resources has led to new challenges in transmission network expansion planning (TNEP). Wind curtailment due to improper expansion of transmission lines prevents the optimal use of these renewable resources. In addition, the uncertainty of these resources puts expansion decisions at risk. In this paper, risk-constrained TNEP in electricity markets in the presence of wind resources is presented with the aim of increasing the utilization of these resources by considering the wind curtailment cost and reducing expected energy not supplied (EENS). For this purpose, a risk-constrained bi-level stochastic model is used. At the upper level, transmission network expansion decisions are made by the independent system operator (ISO) with the aim of minimizing network investment cost and EENS cost. At the lower level, the market-clearing problems are solved maximizing social welfare. Using duality theory, the bi-level problem is converted into a mixed-integer linear programming (MILP) problem. The proposed framework is analyzed using Garver’s six-bus test system and the IEEE 24-bus reliability test system (RTS). The simulation results indicate that considering wind curtailment cost has increased the use of wind units and reduced the expected energy produced by fossil units, which is important from an environmental point of view. However, considering the risk, due to the uncertainty of wind resources, the energy produced by these resources has decreased.

کلیدواژه‌ها [English]

  • Expected energy not supplied
  • Transmission network expansion planning
  • Risk
  • Wind power curtailment
[1] G. A. Orfanos, P. S. Georgilakis, and N. D. Hatziargyriou, “Transmission expansion planning of systems with increasing wind power integration” , IEEE Transactions on Power Systems, vol. 28, no. 2, 2013, pp. 1355–1362.
[2] R. A. Jabr, “Robust transmission network expansion planning with uncertain renewable generation and loads”, IEEE Transactions on Power Systems, vol. 28, no. 4,2013, pp. 4558–4567.
[3] P. Vilaça, A. Street, and J. M. Colmenar, “A MILP-based heuristic algorithm for transmission expansion planning problems”, Electric Power Systems Research, vol. 208, 2022, p. 107882.
[4] A. A. Foroud, A. A. Abdoos, R. Keypour, and M. Amirahmadi, “A multi-objective framework for dynamic Transmission Expansion Planning in competitive electricity market” , International Journal of Electrical Power and Energy Systems, vol. 32, no. 8,2010, pp. 861–872.
[5] M. Moeini-Aghtaie, A. Abbaspour, and M. Fotuhi-Firuzabad, “Incorporating large-scale distant wind farms in probabilistic transmission expansion planning—Part I: Theory and algorithm”, IEEE Transactions on power systems, vol. 27, no. 3,2012, pp. 1585–1593.
[6] M. Moeini-Aghtaie, A. Abbaspour, and M. Fotuhi-Firuzabad, “Incorporating large-scale distant wind farms in probabilistic transmission expansion planning-part II: Case studies”,  IEEE Transactions on Power Systems, vol. 27, no. 3,2012, pp. 1594–1601.
[7] L. P. Garcés, A. J. Conejo, R. García-Bertrand, and R. Romero, “A bilevel approach to transmission expansion planning within a market environment”, IEEE Transactions on Power Systems, vol. 24, no. 3,2009, pp. 1513–1522.
[8] L. Baringo and A. J. Conejo, “Transmission and wind power investment”, IEEE Transactions on Power Systems, vol. 27, no. 2,2012, pp. 885–893.
[9] A. Arabali, M. Ghofrani, M. Etezadi-Amoli, M. S. Fadali, and M. Moeini-Aghtaie, “A multi-objective transmission expansion planning framework in deregulated power systems with wind generation”, IEEE Transactions on Power Systems, vol. 29, no. 6, 2014, pp. 3003–3011.
]10[ حمید فلقی، مریم رمضانی و محمودرضا حقی‌فام، " تحلیل تأثیر نیروگاه‌های بادی بر قابلیت تبادل شبکه‌های انتقال در سیستم قدرت"، نشریه مدل‌سازی در مهندسی، دوره 10، شماره 30، پاییز 1391، صفحه 61-75.
]11[ شهاب دهقان و نیما امجدی، "برنامه ریزی غیرقطعی توسعه ی چندساله ی سیستم قدرت با در نظر گرفتن مزرعه های بادی به ‏کمک ترکیب برنامه ریزی تصادفی و معیار حداقل-حداکثر پشیمانی"، نشریه مدل‌سازی در مهندسی، دوره 14، شماره 47، زمستان 1395، صفحه 41-50.
]12[  اسماعیل عابدینی ،تقی بارفروشی و میثم جعفری نوکندی، "تسویة هماهنگ بازارهای رقابتی برق و گاز مستقل"، نشریه  مدلسازی در مهندسی، دوره 19، شماره 64، بهار 1400، صفحه 53-66.
[13] C. Muñoz, E. Sauma, J. Contreras, J. Aguado, and S. de La Torre, “Impact of high wind power penetration on transmission network expansion planning”, IET Generation, Transmission and Distribution, vol. 6, no. 12, 2012, pp. 1281–1291.
[14] J. Zhan, C. Y. Chung, and A. Zare, “A Fast Solution Method for Stochastic Transmission Expansion Planning”,  IEEE Transactions on Power Systems, vol. 32, no. 6, 2017, pp. 4684–4695.
[15] S. Huang and V. Dinavahi, “A branch-and-cut benders decomposition algorithm for transmission expansion planning”, IEEE Systems Journal, vol. 13, no. 1, 2019, pp. 659–669.
[16] J. Qiu, J. Zhao, D. Wang, and Z. Y. Dong, “Decomposition-based approach to risk-averse transmission expansion planning considering wind power integration”, IET Generation, Transmission and Distribution, vol. 11, no. 14, 2017, pp. 3458–3466.
[17] F. Ugranli and E. Karatepe, “Transmission Expansion Planning for Wind Turbine Integrated Power Systems Considering Contingency”, IEEE Transactions on Power Systems, vol. 31, no. 2, 2016, pp. 1476–1485.
[18] Y. Li, J. Wang, and T. Ding, “Clustering-based chance-constrained transmission expansion planning using an improved benders decomposition algorithm”, IET Generation, Transmission and Distribution, vol. 12, no. 4, 2018, pp. 935–946.
[19] A. Hajebrahimi, A. Abdollahi, and M. Rashidinejad, “Probabilistic Multiobjective Transmission Expansion Planning Incorporating Demand Response Resources and Large-Scale Distant Wind Farms”, IEEE Systems Journal, vol. 11, no. 2, 2017, pp. 1170–1181.
[20] M. Majidi-Qadikolai and R. Baldick, “A Generalized Decomposition Framework for Large-Scale Transmission Expansion Planning”, IEEE Transactions on Power Systems, vol. 33, no. 2,2018, pp. 1635–1649.
[21] R. Minguez, R. Garcia-Bertrand, J. M. Arroyo, and N. Alguacil, “On the Solution of Large-Scale Robust Transmission Network Expansion Planning under Uncertain Demand and Generation Capacity”, IEEE Transactions on Power Systems, vol. 33, no. 2, 2018, pp. 1242–1251.
[22] X. Zhang and A. J. Conejo, “Robust Transmission Expansion Planning Representing Long- and Short-Term Uncertainty”, IEEE Transactions on Power Systems, vol. 33, no. 2, 2018, pp. 1329–1338.
[23] L. Zhang, Q. Zhou, Q. Gao, H. Cheng, and S. Zhang, “Multistage fuzzy-robust transmission network expansion planning under uncertainties”, in International Transactions on Electrical Energy Systems, Jul. 2019, vol. 29, no. 7.
[24] Z. Zhuo, E. Du, N. Zhang, C. Kang, Q. Xia, and Z. Wang, “Incorporating Massive Scenarios in Transmission Expansion Planning With High Renewable Energy Penetration,” IEEE Transactions on Power Systems, vol. 35, no. 2, Mar. 2020, pp. 1061–1074.
[25] D. Liu, S. Zhang, H. Cheng, L. Liu, J. Zhang, and X. Zhang, “Reducing wind power curtailment by risk-based transmission expansion planning”, International Journal of Electrical Power and Energy Systems, vol. 124, Jan. 2021.
[26] A. N. de Paula, E. J. de Oliveira, L. W. de Oliveira, and L. M. Honório, “Robust Static Transmission Expansion Planning Considering Contingency and Wind Power Generation”, Journal of Control, Automation and Electrical Systems, vol. 31, no. 2, Apr. 2020, pp. 461–470.
[27] R. Heydari and T. Barforoushi, “Risk Constrained Transmission Expansion Planning in Electricity Markets Considering Wind Curtailment Cost”, Iranian Journal of Electrical and Electronic Engineering, vol. 18, no. 2, 2022, p. 2247, 2022.
[28] Á. García-Cerezo, L. Baringo, and R. García-Bertrand, “Robust transmission network expansion planning considering non-convex operational constraints,” Energy Economics, vol. 98, Jun. 2021.
[29] L. L. Garver, “Transmission network estimation using linear programming”, IEEE Transactions on Power Apparatus and Systems, no. 7, 1970, pp. 1688–1697.
[30] “OMEL Holding | Omel Holding.” http://www.omelholding.es/omel-holding/ (accessed Mar. 14, 2020).
[31] REE, “Inicio | Red Eléctrica de España,” 2019. https://www.ree.es/es (accessed Mar. 14, 2020).
[32] C. Grigg et al., “The IEEE reliability test system-1996. A report prepared by the reliability test system task force of the application of probability methods subcommittee,” IEEE Transactions on power systems, vol. 14, no. 3, 1999, pp. 1010–1020.