[1] I. Sullivan, B. Zoellner, and P. A. Maggard, "Copper(I)-based p-type oxides for photoelectro-chemical and photovoltaic solar energy conversion", Chemistry of Materials, Vol. 28, August 2016, pp. 5999 – 6016.
[2] J. Kaur, O. Bethge, R.A. Wibowo, N. Bansal, M. Bauch, R. Hamid, E. Bertagnolli, T. Dimopoulos, "All-oxide solar cells based on electrodeposited Cu2O absorber and atomic layer deposited ZnMgO on precious-metal-free electrode", Solar Energy Mater Solar Cells, Vol. 161, March 2017, pp. 449 – 459.
[3] T. Minami, T. Miyata, Y. Nishi, "Cu2O-based heterojunction solar cells with an Al-doped ZnO/oxide semiconductor/thermally oxidized Cu2O sheet structure", Solar Energy, Vol. 105, July 2014, pp. 206 – 217.
[4] M. Tadatsugu, N. Yuki, M. Toshihiro, "Cu2O-based solar cells using oxide semiconductors", Journal of Semiconductors, Vol. 37, NO. 1, January 2016, pp. 014002 – 014007.
[5] M. Tadatsugu, N. Yuki, M. Toshihiro, "Heterojunction solar cell with 6% efficiency based on an n-type aluminum–gallium–oxide thin film and p-type sodium-doped Cu2O sheet", Applied Physics Express, Vol. 8, NO. 2, January 2015, pp. 022301 – 022305.
[6] T. Minami, T. Miyata, Y. Nishi, "Relationship between the electrical properties of the n-oxide and p-Cu2O layers and the photovoltaic properties of Cu2O-based heterojunction solar cells", Solar Energy Materials and Solar Cells, Vol. 147, April 2016, pp. 85 – 93.
[7] T. Minami, Y. Nishi, T. Miyata, "Impact of incorporating sodium into polycrystalline p-type Cu2O for heterojunction solar cell applications", Applied Physics Letters, Vol. 105, NO. 21, November 2014, pp. 212104 –212107.
[8] Y.S. Lee, J. Heo , M.T. Winkler, S.C. Siah, S.B. Kim, R.G. Gordon, T. Buonassisi, "Nitrogen-doped cuprous oxide as a p-type hole-transporting layer in thin-film solar cells", Journal of Materials Chemistry A, Vol. 1, NO. 48, October 2013, pp. 15416 – 15422.
[9] S. Hussain, C. Cao, G. Nabi, W.S. Khan, M. Tahir, M. Tanveer, I. Aslam, "Optical and electrical characterization of ZnO/CuO heterojunction solar cells", Optik - International Journal for Light and Electron Optics. Vol. 130, February 2017, pp. 372 – 377.
[10] Y. Ievskaya, R. Hoye, A. Sadhanala, K. Musselman, J.M.M. Driscoll, "Fabrication of ZnO/Cu2O heterojunctions in atmospheric conditions: improved interface quality and solar cell performance", Solar Energy Materials and Solar Cells, Vol. 135, April 2015, pp. 43 – 48.
[11] F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, C. Miazza, "Efficiency limits for single-junction and tandem solar cells", Solar Energy Materials and Solar Cells, Vol. 90, NO. 18–19, November 2006, pp. 2952 – 2959.
[12] O. M. Bordun, I.Y. Kukharskyy, B.O. Bordun, V.B. Lushchanets, "Dispersion of Refractive Index of β-Ga2O3 Thin Films", Journal of Applied Spectroscopy, Vol. 81, November 2014, pp. 771–775.
[13] T. Minami, Y. Nishi, T. Miyata, "Effect of the thin Ga2O3 layer in n+-ZnO/n-Ga2O3/p-Cu2O heterojunction solar cells", Thin Solid Films, Vol. 549, December 2013, pp. 65 – 69.
[14] T. Yuki, M. Shinsuke, "Device simulation of cuprous oxide heterojunction solar cells", Japanese Journal of Applied Physics, Vol. 54, NO. 11, October 2015, pp. 112303 – 112307.
[15] C. Dumitru, V.F. Muscurel, Ø. Nordseth, L. Fara, P. Sterian "Electrical modeling of the buffer layer for A Cu2O/ZnO solar cell using Silvaco Atlas", UPB scientific bulletin, Series B: Chemistry and materials science, Vol. 79, NO. 2, January 2017, pp. 173 – 178
[16] T. Minami, Y. Nishi, T. Miyata, "Efficiency enhancement using a Zn1−xGexO thin film as an n-type window layer in Cu2O-based heterojunction solar cells", Applied Physics Express, Vol. 9, NO. 5, April 2016, pp. 052301 – 052306.
[17] T. Minami, Y. Nishi, T. Miyata, "High-efficiency Cu2O-based heterojunction solar cells fabricated using a Ga2O3 thin film as n-type layer", Applied Physics Express, Vol. 6, March 2013, pp. 044101 – 044105.
[18] C. Malerba, F. Biccari, C.L.A. Ricardo, M. D’Incau, P. Scardi, A. Mittiga, "Absorption coefficient of bulk and thin film Cu2O", Sol Energy Mater Sol Cells, Vo. 95, NO. 10, October 2011, pp. 2848 – 2854.
[19] M. Rizi, M.H. Shahrokh Abadi, M. Ghaneii, "Two dimensional modeling of Cu2O heterojunction solar cells based-on -Ga2O3 buffer", Optik, Vol. 155, February 2018, pp. 121 – 132
[20] P. Marie, X. Portier, J. Cardin, "Growth and characterization of gallium oxide thin films by radiofrequency magnetron sputtering", Wiley Physica status solidi (a), Vol. 205, NO. 8, August 2008, pp.1943 – 1946
[21] R. David Prabu, S. Valanarasu, V. Ganesh, M. Shkir, S. AlFaify, A. Kathalingam, "Investigation of molar concentration effect on structural, optical, electrical, and photovoltaic properties of spray-coated Cu2O thin films", Surface Interface Analytical Wiley Analytical Science, Vol. 50, January 2018, pp. 346 – 351.
[22] N. Plankensteiner, W. Kautek, T. Dimopoulos, Aqueous Spray Pyrolysis of Cu2O Films: Influence of Reducing Agent and Acetic Acid Addition, Wiley Journal of Chemistry of Nanomaterials for Energy, Biology, and More, Vol. 6, NO. 4, April 2020, pp. 663-671.