بهبود دقت الگوریتم فیلتر کالمن در سامانه AHRS با بکارگیری شبکه عصبی عمیق LSTM

نوع مقاله : مقاله برق

نویسندگان

1 دانشکده مهندسی برق- دانشگاه یزد

2 دانشکده مهندسی برق - دانشگاه یزد

چکیده

استفاده از سامانه AHRSدقیق مبتنی برسنسورهای تکنولوژی MEMS، با حجم‌کم و قیمت ارزان،نقش به سزایی در ناوبری و هدایت وسایل بدون سرنشین ایفا می-کند.امروزه استفاده از الگوریتم‌ها و روش های گوناگون از جمله فیلترهای وفقی، شبکه های عصبی و فیلترهای تخمینگر جهت افزایش دقت این سامانه ها و کاهش نویز سنسورهای آن بسیار مورد توجه محققان قرار گرفته است.در این مقاله از ترکیب شبکه عصبی عمیق LSTM و فیلترکالمن جهت بهبود دقت سامانهAHRSاستفاده شده است. در این روش ابتدا شبکه عمیق مورد استفاده تحت آموزش قرار گرفته و سپس به عنوان یک تصحیح‌گر، ضرایب موثر فیلترکالمن را تصحیح می‌کند. این روش تمامی محدودیت های فیلتر کالمن از جمله خطی بودن و حافظه دار نبودن آن را برطرف کرده و بدون استفاده از سامانه GPSدقت زوایای خروجی را بهبود بخشیده است. نتایج این تحقیق برروی داده‌های واقعی سنسورIMU مبتنی بر تکنولوژی MEMSکه نسبت به سنسورهای مورد استفاده در کارهای مشابه دارای دقت کمتری بوده، نصب شده برروی هواپیمای بدون سرنشین با مانور بالا، انجام شده و بیانگر بهبود 35 درصدی دقت زوایای وضعیت سامانهAHRS و بهبود 40 درصدی کاهش نویز خروجی سنسورها می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Improving the accuracy of the kalman filter algorithm in AHRS sensor using LSTM deep learning module

نویسندگان [English]

  • mohamad sabzevari 1
  • Masoudreza aghabozorgi 2
1 Electrical Engineering Dept. - Yazd University
2 Electrical Engineering Dept.- Yazd University
چکیده [English]

Accurate Attitude and Heading Reference System (AHRS) play an essential role in navigation and guidance Unmanned vehicles. Today, the use of various algorithms and methods, including adaptive filter, neural network and predictor filters, to increase the accuracy of these systems and reduce the noise of its sensors, has received much attention from researchers. In this paper, the combination of LSTM deep neural network and kalman filter is used to improve the accuracy of AHRS system. In this method, first the deep network used is trained and then as a corrector, it corrects the effective coefficients of Filter Kalman. This method removes all the limitations of Kalman filter, including its linearity and non-memory, and improves the accuracy of the output attitudewithout the use of GPS. The experiments in this study, are based on real low-cost MEMS-based IMU sensors, which is less accurate than sensors used in similar article, installed on high-maneuverability UAV, present about 35% accuracy improvement in attitude estimation and 40% reduction of the output noise.

کلیدواژه‌ها [English]

  • Navigation
  • AHRS
  • Kalman Filter
  • LSTM deep neural network
  • UAV
[1] Z. Liu and Y. Wang, "Implementation and Evaluation of Attitude Heading and Reference System Based on MEMS", Control and Decision Conference (CCDC), Chinese, 2020, pp. 5404-5408.
[2] J. Hidalgo-Carrió, S. Arnold and P. Poulakis, "On the Design of Attitude-Heading Reference Systems Using the Allan Variance", IEEE Transactions On Ultrasonic, Ferroelectrics, and Frequency Control, Vol.63, No.4, 2016, pp.656-665.
[3] Q.Fangjun, Ch.Lubin, S.Feng, "A Sequential Multiplicative Extended Kalman Filter for Attitude Estimation Using Vector Observations", Sensors, Vol.18, 2018,pp.1414.
[4] J.Crassidis, F.Markley, Y. Cheng, "Survey of Nonlinear Attitude Estimation", Guidance Control and Dynamic,Vol.30, 2007, pp.12–28.
[5] M.Grewal, L.Weill and A. Andrews, Global positioning systems, inertial navigation, and integration, 2nd ed., Wiley, 2007.
[6] G.Araghi, R.Landry, "Temperature compensation model of MEMS inertial sensors based on neural network", IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey(USA), 2018, pp. 301-309.
[7] J.Shiau, C.Huang and M.Chang, "Noise Characteristics of MEMS Gyro's Null Drift and Temperature Compensation", Journal of Applied Science and engineering, vol.15, 2012, pp. 239-246.
[8] R.Song, X.Chen, "Error estimation of airborne Strap down Inertial Navigation System based on neural network", IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), Padua, 2017, pp. 201-205.
[9] A.Noureldin, A.ElShafie, M.Bayoumi, "GPS/INS Integration Utilizing Dynamic Neural Networks for Vehicular Navigation", Information Fusion, Vol.12, 2011, pp.48–57.
[10] L.Zhang, J.Liu and Z.Xiong, "Performance Analysis of Adaptive Neuro Fuzzy Inference System Control for MEMS Navigation System", Math. Probl. Eng., Vol.14, 2014, pp. 96-102.
[11] C.Toth, D.A.Grejner-Brzezinska and S.Moafipoor, "Pedestrian Tracking and Navigation Using Neural Networks and Fuzzy Logic", IEEE International Symposium on Intelligent Signal Processing, Alcala de Henares, Spain, 2007, pp. 1–6.
[12] S.Hosseinyalamdary, "Deep Kalman Filter: Simultaneous Multi-Sensor Integration and Modelling; A GNSS/IMU Case Study", sensors, Vol.18, 2018, pp.1316.
[13] J.Liu and G.Guo, "Vehicle Localization during GPS Outages with Extended Kalman Filter and Deep Learning", IEEE Transactions on Instrumentation and Measurement, Vol.70, 2021, pp.1-10.
[14] C. Chen, C. X. Lu, J. Wahlström, A. Markham and N. Trigoni, "Deep Neural Network Based Inertial Odometry Using Low-Cost Inertial Measurement Units", IEEE Transactions on Mobile Computing, Vol.20, 2021, pp.1351-1364.
[15] Y. Liu, Q. Luo and Y. Zhou, "Deep Learning-enabled Fusion to Bridge GPS Outages for INS/GPS Integrated Navigation", IEEE Sensors, Vol.10, 2022, pp.1-12.
[16] Fa.Ciaccio, P. Russo and S. Troisi, "DOES: A Deep Learning-Based Approach to Estimate Roll and Pitch at Sea", IEEE access, Vol.10, 2022, pp.29307 – 29321.
[17] A.Angrisano, "GNSS/INS integration methods",PhDThesis in ScienceGeodeticsandTopographic, Messina university, 2010, Naple.
[18] B.Ristic, S. Arulampalam and N. Gordon, "Beyond the Kalman filter", IEEE Aerospace and Electronic Systems Magazine, Vol.19, 2004, pp.37- 38.
[19] https://www.analog.com/en/adis16448/datasheet.html
[20] B.Lim, S.Zohren and S.Roberts, "Recurrent Neural Filters: Learning Independent Bayesian Filtering Steps for Time Series Prediction", International Joint Conference on Neural Networks (IJCNN), 2019, pp.1-7.
]21[ ن.عزتی، ح.طاهری، "سنجش طیف توزیع شده با تهیه نقشه های جغرافیائی رادیوئی در شبکه های رادیوشناختی"، مدلسازی در مهندسی، دوره17، شماره56، 1398، صفحه223-233.
[22] K.Chandrasekaran, G.vijay, "Pitch and Roll angle estimation using partial DCM model approach for a high performance aircraft",Control Conference Hyderabad, India, 2016, pp.140-149.
[23] R.Mahony, T. Hamel and J. Pflimlin, "Nonlinear Complementary Filters on the Special Orthogonal Group", IEEE Transactions on Automatic Control, vol. 53, no. 5, 2008, pp. 1203-1218.
[24] M.brossard,A.silvère, "Denoising IMU Gyroscopes with Deep Learning for Open-Loop Attitude Estimation",IEEE Robotics and Automation, Vol.PP, 2020, pp.1-8.
[25] M. K. Al-Sharman, Y. Zweiri, M.Jaradat, R. Al-Husari, D. Gan and L. D. Seneviratne, "Deep-Learning-Based Neural Network Training for State Estimation Enhancement: Application to Attitude Estimation", IEEE Transactions on Instrumentation and Measurement, vol.69, no.1, 2020, pp. 24-34.
]26[ ر.راستگو، ک.کیانی، "شناسایی چهره با استفاده از تنطیم دقیق شبکه های کانولوشنی عمیق و رویکرد یادگیری انتقالی "، مدلسازی در مهندسی، دوره17، شماره58، 1398، صفحه103-111.
 [27] N.El-Sheimy,A.Youssef, "Inertial sensors technologies for navigation applications: state of the art and future trends", SatellNavig, Vol.1, 2020, pp.1-7.
]28[ م.معلم، ع.پویان، "کشف ناهنجاری با استفاده از کد کننده خودکار مبتنی بر بلوکهای LSTM"، مدلسازی در مهندسی، دوره17، شماره56، 1398، صفحه191-211.
 [29] I. Board, "IEEE standard specification format guide and test procedure for single-axis interferometric fiber optic gyros", IEEE Std, 1998, pp. 952-1997.