تفکیک ساختارمند تصاویر راهرو برای هدایت ربات

نوع مقاله : مقاله کامپیوتر

نویسندگان

1 دانشکده ریاضی و علوم کامپیوتر، دانشگاه دامغان

2 استادیار، دانشکده ریاضی و علوم کامپیوتر، دانشگاه دامغان

3 دانشکده ریاضی و علوم کامپیوتر دانشگاه دامغان-دانشگاه دامغان

چکیده

استخراج ساختاری از فضای اطراف ربات به عنوان مسئله‌ای حائز اهمیت برای هدایت ربات در علم پردازش تصویر و بینایی کامپیوتر است که در سال‌های اخیر مورد توجه خاصی قرار گرفته است، برای این منظور بسیار واجب است که ساختار فضای اطراف ربات در محیط مشخص گردد، در روش پیشنهادی از یک دوربین عکاسی برای عکس برداری از راهرو به عنوان فضایی که ربات در آن حرکت می‌کند، استفاده می‌شود. برای استخراج ساختار محیط، در روش پیشنهادی تکنیکی بصورت ترکیبی از نشانه‌های بصری برای ارزیابی احتمال وجود خطوط سطحی لبه‌های عمودی و افقی که به ترتیب متعلق به دیوار و زمین است، استفاده می‌شود، ابتدا از یک نوع الگوریتم تشخیص لبه به‌نام سوبل برای پیدا کردن خطوط لبه‌دار در دو جهت عمودی و افقی استفاده می‌شود، سپس یک حد آستانه را برای برای کاهش خطوط لبه اضافی در نظر می‌گیریم، در نهایت به منظور قدرتمندسازی روش خود با ارتقا الگوریتم تفکیک K-means، برای خوشه‌بندی استفاده می‌کنیم، این سه روش در کنار هم یک سیستم قوی را ایجاد می‌کند که کمک می‌کند مولفه‌های ساختارساز راهرو از قبیل دیوار، کف، مرز دیوار-کف شناسایی شود، یافتن این مولفه‌ها برای هدایت ربات در محیط‌های داخلی امری بسیار ضروری است.

کلیدواژه‌ها


عنوان مقاله [English]

Segmentation of Corridor Images for Structure Based Robot Navigation

نویسندگان [English]

  • Elahe Amid 1
  • Arash Azimzadeh Irani 2
  • Reza Pourgholi 3
1 School of Mathematics and Computer Science, Damghan University, P.O.Box 36715-364, Damghan, Iran.
2 School of Mathematics and Computer Science, Damghan University, P.O.Box 36715-364, Damghan, Iran.
3 School of Mathematics and Computer Science, Damghan University, P.O.Box 36715-364, Damghan, Iran. Web address:http://faculty.du.ac.ir/pourgholi/
چکیده [English]

Extracting the structure of space around a robot, is an important issue for robot navigation. In order to identify the structure of a corridor, it is necessary to analyze its composition. We use a camera to take some photos from the corridor in front of the robot, we apply the Sobel algorithm to detect edge lines in two directions, Sobel algorithm finds horizontal and vertical edge lines, the vertical and horizontal edges are respectively related to the wall and floor. then we use a threshold to reduce unnecessary edge linesc and refuse the useless edge lines and eliminate them by introduced threshold methods, so it reduces the computation time and prevent the impact of unnecessary data. We also use the intersection points of the edge lines to obtain the boundary when vertical and horizontal lines cannot give us the wall-floor boundary lines. for more robustness we use a segmentation algorithm based on clustering. These three together help to identify structural cues of corridor such as wall, floor, wall-floor borderline. These cues are necessary for robot navigation in indoor environment.

کلیدواژه‌ها [English]

  • Image segmentation
  • Corridor structural cues
  • Robot navigation
]1[ عباس نصر آبادی، ساسان آزادی وجواد حدادنیا، "آشکارسازی چهره انسان در تصاویر رنگی بر مبنای فیلتر گوسی"، نشریه مدل سازی در مهندسی، دوره3، شماره 17 ،2009.
[2] Ganesan, P., and G. Sajiv. "A comprehensive study of edge detection for image processing applications", IEEE International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), 2017, pp. 1-6.
[3] Li, Yinxiao, and Stanley T. Birchfield. "Image-based segmentation of indoor corridor floors for a mobile robot" IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, pp. 837-843.
[4] Gerogiannis, Demetrios, Christophoros Nikou, and Aristidis Likas. "Fast and efficient vanishing point detection in indoor images." In Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), IEEE, 2012, pp. 3244-3247.
[5] Dhanachandra, Nameirakpam, and Yambem Jina Chanu. "A survey on image segmentation methods using clustering techniques", European Journal of Engineering and Technology Research, Vol. 2, NO. 1, 2017, pp. 15-20.
[6] Gupta, Surbhi, R. Sangeeta, Ravi Shankar Mishra, Gaurav Singal, Tapas Badal, and Deepak Garg. "Corridor segmentation for automatic robot navigation in indoor environment using edge devices", Computer Networks 178, 2020, pp. 107374.
[7] Canny, John. "A computational approach to edge detection", IEEE Transactions on pattern analysis and machine intelligence, (6), 1986, pp. 679-698.
[8] Kumar, BK Shreyamsha, "Image denoising based on gaussian/bilateral filter and its method noise thresholding", Signal, Image and Video Processing, Vol. 7, no. 6, 2013, pp. 1159-1172.
[9] Lohare, Deepali N., Ramesh R. Manza, and Neha Tiwari, “Comparative Study of Prewitt and Canny Edge Detector Using Image Processing Techniques”, In Rising Threats in Expert Applications and Solutions, Singapore, 2021, pp. 705-713.
[10] Gupta, Samta, and Susmita Ghosh Mazumdar, “Sobel edge detection algorithm”, International journal of computer science and management Research, Vol. 2, NO. 2, 2013, pp. 1578-1583.
[11] Shrivakshan, G. T., and Chandramouli Chandrasekar, “A comparison of various edge detection techniques used in image processing”, International Journal of Computer Science Issues (IJCSI), Vol. 9, NO. 5, 2012, pp. 269.
[12] Buza, Emir, Amila Akagic, and Samir Omanovic, “Skin detection based on image color segmentation with histogram and k-means clustering”, In 2017 10th International Conference on Electrical and Electronics Engineering (ELECO), 2017, pp. 1181-1186.
[13] Jain, Anil K, "Data clustering: 50 years beyond K-means", Pattern recognition letters, Vol. 31, NO. 8, 2010, pp. 651-666.
[14] Nayini, S. Ehsan Yasrebi, Somayeh Geravand, and Ali Maroosi, “A novel threshold-based clustering method to solve K-means weaknesses”, In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), 2017, pp. 47-52.
[15] Fahim, A. M., A. M. Salem, F. Af Torkey, and MA1101 Ramadan, “An efficient enhanced k-means clustering algorithm”, Journal of Zhejiang University-Science A, Vol. 7, NO. 10, 2006, pp. 1626-1633.
[16] Felzenszwalb, Pedro F., and Daniel P. Huttenlocher, “Efficient graph-based image segmentation”, International journal of computer vision, Vol.59, NO. 2, 2004, pp. 167-181.
[17] Bekhouche, Safia, and Yamina Mohamed Ben Ali, “Improvement of Quadree-Based Region Segmentation”, In 2018 International Conference on Advances in Computing and Communication Engineering (ICACCE), 2018, pp. 194-200. IEEE.
[18] Luo, Ming, Yu-Fei Ma, and Hong-Jiang Zhang, “A spatial constrained k-means approach to image segmentation”, In Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint, Vol. 2, 2003, pp. 738-742.
[9] Kumar, Suryansh, Ayush Dewan, and K. Madhava Krishna, “A bayes filter based adaptive floor segmentation with homography and appearance cues”, In Proceedings of the Eighth Indian Conference on Computer Vision, Graphics and Image Processing, 2012, pp. 1-8.
[20] Magudeeswaran, V., C. G. Ravichandran, and P. Thirumurugan, "Brightness preserving bi‐level fuzzy histogram equalization for MRI brain image contrast enhancement", International Journal of Imaging Systems and Technology, Vol. 27, NO. 2, 2017, pp. 153-161.
]21 [اسدی امیری و حمید حسن پور، "ارائه روشی برای پیش‎ پردازش تصویر جهت بهبود عملکرد JPEG 2000 در فشرده‎ سازی تصویر"، نشریه مدل سازی در مهندسی، دوره 15، شماره 48, 2017، صفحه 247-258.
]22[ راضیه راستگو و کورش کیانی، "شناسایی چهره بااستفاده از تنطیم دقیق شبکه های کانولوشنی عمیق و رویکرد یادگیری انتقالی"، نشریه مدل سازی در مهندسی، دوره 17، شماره 58, 2019، صفحه 103-111.