بررسی ناپایداری و چین خوردگی در خمش قطاع استوانه با روش دبلیوکیبی

نوع مقاله : مقاله مکانیک

نویسندگان

1 گروه ریاضی کاربردی ،دانشکده ریاضی ،دانشگاه سیستان و بلوچستان،زاهدان،ایران

2 گروه ریاضی کاریردی،دانشکده ریاضی آمار و کامپیوتر،دانشگاه سیستان و بلوچستان،زاهدان،ایران

چکیده

خمش یکی از حالت‌های تغییر شکل سازه‌های خمیده الاستیکی در مهندسی است که در‌ علوم و طبیعت وجود دارد. در این مقاله خمش قطاع یک لوله استوانه‌ای باز به یک استوانه کامل مورد مطالعه قرار می‌گیرد که در سطح داخلی قطاع استوانه چین خوردگی‌های دامنه کوتاه ایجاد می‌شود.
در این مقاله مسئله مقدار ویژه خمش قطاع استوانه‌ای برای ماده‌ای فوق الاستیک، تراکم‌ناپذیر، همگن و همسانگرد مدل‌بندی شده است و ناپایداری آن را برای تابع انرژی مونی‌ریولین به کمک نظریه تغییر شکل نموی (افزوده شده) و روش تحلیلی دبلیو کیبی بررسی می‌کنیم. مقادیر ویژه این مسئله از روش تحلیلی دبلیوکیبی باتوجه‌به شرایط مرزی و شرط خمش تعیین می‌‌شوند، این نتایج مجانبی به‌دست آمده از روش دبلیوکیبی نشان می‌دهند که شرط خمش به نسبت شعاع‌های داخلی بعد و قبل از تغییر شکل، زاویه قطاع استوانه‌ای قبل و بعد از تغییر شکل، عدد مد محیطی (تعداد چین‌خوردگی‌های سطح داخلی قطاع استوانه‌ای) و ضخامت قطاع وابسته است. روند تغییرات و وابستگی این پارامترهای هندسی با رسم نمودارها مورد بررسی قرار می‌گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Instability and Wrinkles in the Bending of elastic sector with analytical WKB method

نویسندگان [English]

  • ALIREZA HADIPOUR 1
  • Murteza Sanjaranipour 2
1 Department of Mathematics, University of Sistan and Bluchestan. Zahedan. Iran
2 Department of Mathematics and its Applications, Sistan and Baluchestan University, ,Zahedan, Iran
چکیده [English]

In this paper, We purpose to analyze the large bending of elastic curved structures that found in the engineering, science and nature. We investigated large bending of an open sector circular cylindrical tube into a complete circular cylindrical tube such that the solid is modeled via an incompressible, homogenous and isotropic hyperelastic material. According to the finite deformation of the structure, in the compressed side of bended beam wrinkles and local buckling may appear. We interpret the onset this instability by using the theory of incremental deformation superimposed on the finite deformation and analytical WKB method for Mooney-Rivilin strain energy function is utilized and boundary loads are defined for bending analysis. Moreover, the instability and numbers of wrinkles is studied in detail. The main results are that the obtained bending conditions are depended on the sector angles before and after deformation, exterior traction and the numbers of wrinkles per surface area. The trend of changes and dependence of these geometric parameters are examined by drawing diagrams

کلیدواژه‌ها [English]

  • Large bending
  • Instability
  • WKB method
  • Nonlinear Elasticity
  • Compound matrix method
[1] S. Rudykh and M. C. Boyce, "Analysis of Elasmoid Fish Imbricated Layered Scale-Tissue Systems and their Bio-inspired Analogues at Finite Strains and Bending", IMA Journal of Applied mathematics, Vol. 79, 2014,  pp. 830-847.
[2] T. Sigaeva, Mangan, L. Vergori, M. Destrade and L. Sudak, "Wrinkles and Creases in the Bending, Unbending and Eversion of Soft Sectors”, Proceedings of the Royal Society A, 2018, DOI: 10. 1098/rspa.2017.0827.
[3] X. Jing, S. Chen, C. Zhang and F. Xie, "Increasing Bending Performance of Soft Actuator by Silicon Rubbers of Multiple Hardness", Machines 2022, 10, 272. https://doi.org/10.3390/machines10040272.
[4] D. M. Haughton, "Flexure and Compression of Incompressible Elastic Plates", International Journal of Engineering Science. Vol. 37, 1999, pp. 1693-1708.
[5] C. D. Coman and M. Destrade, "Asymptotic Results for Bifurcations in Pure Bending of Rubber Blocks”, Quarterly Journal of Mechanics and Applied Mathematics. Vol. 61, No. 18, 2008, pp. 395-414.
[6] M. Destrade, A. Ni. Annaidh and C. D. Coman,"Bending Instabilities of Soft Biological Tissues”, International Journal of Solids Structures, Vol. 46, 2009, pp. 4322-4330.
[7] S. Roccabianaca, M. Gei and D. Bigoni, "Plane Strain Bifurcations of Elastic Layered Structures Subject to Finite Bending: Theory Versus Experiments”, Journal of Applied mathematics. Vol. 75, 2010, pp. 525-548.
[8] M. Destrade, J. Murphy and R. Ogden, "On Deforming a Sector of a Circular Cylindrical Tube into an Intact Tube: Existence, Uniqueness and Stability", International Journal of Engineering Science. Vol. 48, 2010, pp. 1212-1224.
[9] R. S. Rivlin, "Large Elastic Deformations of Isotropic Materials V: the problem of flexure", Proceedings of the Royal Society A, 1949, pp. 463-473.
[10] L. A. Taber, Nonlinear Theory of Elasticity, Hackensack, New Jersey: World Scientific, 2004.
[11] A. R. Setoodeh, H. Farahmand, "Nonlinear Modeling of Crystal System Transition of Block Phosphorous Using Continuum-DFT Model", Journal of Physics: Condensed Matter, 2018, DOI: 10.1088/1361-648X/aa99f7.
[12] احسان زمانی، فاطمه عباس‌پور و سجاد صیفوری، " مطالعه اثر ضربه نانوذرات بر نانولوله‌های کربنی دوجداره با استفاده از تئوری غیرمحلی الاستیسیته"، مجله مدل‌سازی در مهندسی، دوره 17، شماره 58، پاییز 1398، صفحه 317-328.
[13]  امیر نجیبی و رمضان علی حاجی قربانی، " بررسی تنش الاستیک در یک استوانة جداره ضخیم ساخته شده از مواد خواص گرادیانی دوبعدی با مدل ماده جدید"، مجله مدل‌سازی مهندسی، دوره 17،شماره 56، بهار 1398،صفحه 111-122.
[14]  ابراهیم علیزاده، جواد بابایی، پویا دهستانی، رضا بطالبلویی و حسین بهروز، " بررسی تأثیر ضخامت و اغتشاشات هندسی اولیه پوسته‌های جدار نازک کامپوزیتی در وقوع پدیده کمانش تحت‌فشار محوری"، دوره 16، شماره 53، تابستان 1397، صفحه 121-134.
[15] J. F. Louf, J. Knoblauch and H. Jensen, "Bending and Stretching of Soft Pores Enable Passive Control of Fluid Flows", Physical Review Letters, 2020, http://doi.org/10.1103/PhysRevLett.125.098101.
[16] Y. Fu, "Some Asymptotic Results Concerning the Buckling of a Spherical Shell of Arbitrary Thickness", International Journal of Non-Linear Mechanics, Vol. 33, No. 10, 1998, pp. 1111-1122.
[17] Y. Fu and M. Sanjaranipour, "WKB Method with Repeated Roots and its Application to the Stability Analysis of an Everted Cylindrical Tube, SIAM Journal on Applied Mathematics, Vol. 62, No. 14,2002, pp. 1856-1871.
[18] Y. Fu and Y. Lin, "A WKB Analysis of the Buckling of an Everted Neo-Hookean Cylindrical Tube". Mathematics and Mechanics of Solids, Vol. 7, No. 17, 2002, pp. 438-501.
[19] M. Sanjaraipour, "A WKB Analysis of the Buckling Condition for a Cylindrical Shell of Arbitrary Thickness Subject to an External Pressure", IMA International Journal of Applied Mathematics, Vol.70, No. 19, 2005, pp. 147-161.
[20] M. Sanjaranipour, "WKB Analysis of the Buckling of a Neo-Hookean Cylindrical Shell of Arbitrary Thickness Subject to an External Pressure, International Journal of Applied Mechanics, Vol. 2, No.4, 2010, pp. 852-870.
[21] M. Sanjaranipour and N. Abdolalian, “Higher-order Asymptotic Results for the Wrinkling of an Everted Varga Spherical Shell”, Zeitschrift fur angewandte Mathematik und Physik, Vol. 66, No. 4, 2015, pp. 1939-1947.
[22] M. Sanjaranipour, A. Hatami and N. Abdolalian, "Another Approach of WKB Method for the Stability Analysis of the Bending of an Elastic Rubber Block", International Journal of Engineering Science, Vol. 62, No. 6, 2013, pp. 1-8. 
[23] R. W. Ogden, Non-Linear Elastic Deformation, Dover Publications, New York, 1997.
[24] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York, 1978.