زمانبندی تعمیرات اساسی، با توجه به محدودیت دسترسی به قطعات یدکی، قابلیت اطمینان و دسترسی‌پذیری تجهیزات و با استفاده از داده‌‌های فازی

نوع مقاله : مقاله صنایع

نویسندگان

1 گروه مهندسی صنایع/ دانشکده فنی و مهندسی/ دانشگاه کردستان/ کردستان/ سنندج

2 گروه مهندسی صنایع دانشگاه کردستان- سنندج- ایران

چکیده

این مقاله یک مدل ریاضی در راستای برنامه‌ریزی مطلوب تعمیرات اساسی ماشین‌آلات، در شرایط محدودیت دسترسی به قطعات یدکی در شرایط عدم قطعیت و عدم وجود اطلاعات دقیق و کامل ارائه‌ می‌کند. پارامترهای هزینه تعمیرات، تقاضا، راندمان دستگاه‌ها، قیمت فروش هر واحد محصول و میزان تولید به‌عنوان پارامترهای فازی در نظر گرفته‌شده است. نخست دسترسی‌پذیری یک سیستم صنعتی مدل می‌شود، سپس نتایج آن در توسعه یک مدل برنامه‌ریزی مختلط عدد صحیح غیرخطی به‌کاربرده می‌شود تا با حل آن، زمان انجام تعمیرات اساسی تجهیزات به‌گونه‌ای مشخص شود که مجموع هزینه‌‌های تعمیرات و بهره‌برداری را کمینه کند. رویکرد ارائه‌شده برای یک مثال عددی به‌صورت یک سیستم تولیدی فرضی اجراشده است. درنهایت با حل دقیق، با استفاده از نرم‌افزار GAMS، پاسخ بهینه مثال موردنظر به‌دست‌آمده است. تحلیل حساسیت پاسخ بهینه نسبت به تغییر پارامترهای اصلی مدل انجام‌شده و نتایج به‌صورت نمودار نشان داده‌شده است. آنگاه مسئله مجدداً با استفاده از رویکرد بهینه‌سازی فازی حل‌شده و نتایج به‌دست‌آمده با روش حل قبلی مقایسه شده است. این نتایج بیانگر آن است که رویکرد فازی انعطاف زیادی در انتقال انتظارات تصمیم‌گیرندگان به فرآیند مدل‌سازی دارد، زیرا با استفاده از آن می‌توان به‌خوبی نظر تحلیل‌گر را در رابطه با اولویت‌بندی توابع هدف، در مدل برنامه‌ریزی ریاضی، منعکس نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Overhaul Scheduling, considering the limited access to spare parts, reliability, and equipment availability by using fuzzy data

نویسندگان [English]

  • MAHMOUD SHAHROKHI 1
  • Ahsan Majidi 2
1 Department of Industrial Engineering Faculty of Engineering University of Kurdistan sanandaj
2 Decomponentment of Industrial Engineering, University of Kurdistan, Sanandaj, Iran,
چکیده [English]

This article presents a mathematical model to develop the optimal planning for equipment overhaul under limited access to spare parts, uncertainty, and lack of accurate and complete information. The parameters of repair cost, demand, device efficiency, the selling price of each product unit, and production rate are considered fuzzy parameters. First, the system availability is modeled. The results are used in the development of a non-linear mixed integer programming model so that by solving it, the time of equipment overhaul can be determined in such a way as to minimize the total costs of repairs and operation. The presented approach is implemented for a numerical example, including a hypothetical production system. Finally, with the exact solution, using GAMS software, the optimal answer to the desired problem has been obtained and analyzed. The optimal solution sensitivity analysis facing the change of the main parameters of the model is done, and the results are shown in the graphs. Then the problem is resolved again using the fuzzy optimization approach, and the results are compared with the previous solution method. These results indicate that the fuzzy approach has excellent flexibility in transferring decision-maker's expectations to the modeling process. In this way, the analyst's opinion regarding the prioritization of the objective functions can be well reflected in the mathematical programming model.

کلیدواژه‌ها [English]

  • Major repairs
  • spare parts
  • Reliability (RBD)
  • accessibility
  • Fuzzy data
[1] G. Sharma, and R. N. Rai, "Reliability parameter estimation of repairable systems with imperfect maintenance, repair and overhaul", International Journal of Quality & Reliability Management, 2020.
[2] S. U. Handayani, W. Mangestiyono, D. Ariwibowo, O. Haryadi, and I. Mujiarto, "Effect of Overhaul on Thermodynamic Performance of Gas Turbine Generator in Combined Cycle Powerplant", Advanced Science Letters, Vol. 24, No. 12, 2018, pp. 9800-9802.
[3] H. Sabouhi, M. Fotuhi-Firuzabad, and P. Dehghanian, "Identifying critical components of combined cycle power plants for implementation of reliability-centered maintenance", CSEE Journal of Power and Energy Systems, Vol. 2, No. 2, 2016, pp. 87-97.
[4] N. A. Shcherbakova, "Feasibility Analysis of Overhaul and Modernization of Equipment", In International Scientific Conference Far East Con (ISCFEC 2018), January 2019, pp. 1006-1010.
[5] C. M. F. Lapa, C. M. N. Pereira, and de M. P. Barros, "A model for preventive maintenance planning by genetic algorithms based in cost and reliability", Reliability Engineering & System Safety, Vol. 91, No. 2, 2006, pp. 233-240.
[6] W. R. W. Sulaiman, A. J. Adala, R. Junin, I. Ismail, A. R. Ismail, M. A. Hamid, and K. Kidam, "Effects of salinity on nanosilica applications in altering limestone rock wettability for enhanced oil recovery", In Advanced Materials Research, Vol. 1125, 2015, pp. 200-204. Trans Tech Publications Ltd.
[7] H. F. de Castro, and K. L. Cavalca, "Maintenance resources optimization applied to a manufacturing system", Reliability Engineering & System Safety, Vol. 91, No. 4, 2006, pp. 413-420.
[8] J. V. Taboada, V. Diaz-Casas, and X. Yu, "Reliability and Maintenance Management Analysis on Off Shore Wind Turbines (OWTs)", Energies, Vol. 14, No. 22, 2021, pp. 7662.
[9] A. A. Fattah, and A. Sudiarno, "Analysis of Changing Working Patterns on an Overhaul Activity in a Power Plant Industry using Lean Manufacturing Concept", In IOP Conference Series: Materials Science and Engineering, Vol. 598, No. 1, August 2019, p. 012072. IOP Publishing.
[10] E. Shayesteh, J. Yu, and P. Hilber, "Maintenance optimization of power systems with renewable energy sources integrated", Energy, Vol. 149, 2018, pp. 577-586.
[11] D. Piasson, A. A. Bíscaro, F. B. Leão, and J. R. S. Mantovani, "A new approach for reliability-centered maintenance programs in electric power distribution systems based on a multiobjective genetic algorithm", Electric Power Systems Research, Vol. 137, 2016, pp. 41-50.
[12] F. Zhang, and A. K. Jardine, "Optimal maintenance models with minimal repair, periodic overhaul and complete renewal", IIE transactions, Vol. 30, No. 12, 1998, pp. 1109-1119.
[13] A. Osyaev, A. Rauba, and A. Kosarev, "Algorithm of the target function of time between overhauls taking into account gradual and sudden failure of the locomotive equipment", In MATEC Web of Conferences, Vol. 239, 2018, p. 01029. EDP Sciences.
[14] E. Wahyu, and A. Wahjudi, "Optimization of Interval Between Overhaul on Steam Power Plant with Risk Based On Human Error and Profi", IPTEK Journal of Proceedings Series, Vol. 1, 2019, pp. 21-23.
[15] G. Pulcini, "On the overhaul effect for repairable mechanical units: A Bayes approach", Reliability Engineering & System Safety, Vol. 70, No. 1, 2000, pp. 85-94.
[16] J. Saravanan, and J. J. Thakkar, "An integrated approach for lead time reduction of military aircraft major overhaul: A case of ABC Company", International Journal of Quality & Reliability Management, Vol. 35, 2018, pp. 2-33.
[17] B. Rašuo, and G. Đuknić, "Optimization of the aircraft general overhaul process", Aircraft engineering and aerospace technology, Vol. 85, No. 5, 2013, pp. 343-354.
[18] A. J. Da Silva, M. M. Bellinello, G. F. M. De Souza, A. C. Netto, C. A. Murad, and S. I. Nabeta, "Game theory supporting a decision-making process to reduce losses in hydro generating plants overhaul delays", Proceedings of the International Conference on Industrial Engineering and Operations Management, 2021, pp. 800–810.