رفتار حرارتی نانوسیال هیبریدی TiO2(85%)/MWCNT(15%)-(CH2OH)2(50%)/H2O(50%) تحت تاثیر عوامل دما و کسرحجمی با رویکرد روش آزمایشگاهی و سطح پاسخ

نوع مقاله : مقاله مکانیک

نویسنده

دانشیار، دانشکده فنی و مهندسی، دانشگاه جامع امام حسین(ع)، تهران، ایران

چکیده

در این مطالعه برای نخستین ‌بار به بررسی تجربی و آماری رفتار حرارتی نانو سیال هیبریدیTiO2(85%)/MWCNT(15%)-(CH2OH)2(50%)/H2O(50%) پرداخته شد. هدایت حرارتی نانو سیال توسط دستگاه KD2 PRO در کسر حجمی‌های و دماهای  اندازه‌گیری شد. تایید نانو مقیاس و ساختار نانو ذرات با استفاده از ابزارهای عکس‌برداری میکروسکوپ الکترونی عبوری (TEM) و روبشی (SEM) و آنالیز پراش اشعه ایکس (XRD) صورت گرفت. نتایج تجربی تحلیل‌های آزمایشگاهی ثابت کرده که با افزایش دما و کسر حجمی، هدایت حرارتی نسبی  افزایشی است و میزان این افزایش برای کسر حجمی نسبت به دما  شدیدتر است. نتایج آماری تحلیل تجربی نشان داده که کمینه و بیشینه افزایش هدایت حرارتی نانو سیال نسبت به سیال پایه به ترتیب برابر با %6/1 و %9/17 ثبت شده است. مدلسازی سطح پاسخ برای هدایت حرارتی نسبی نانو سیال نشان می‌دهد که مقادیر R2 و Adj R2 به ترتیب برابر با 9882/0 و 9860/0 و مقدار MOD بین 1- و 1+ است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Thermal Behavior of TiO2 (85%) / MWCNT (15%) - (CH2OH) 2 (50%) / H2O (50%) Hybrid Nanofluid under the Influence of Temperature and Volume Fraction Factors with Laboratory and Response Surface Methods

نویسنده [English]

  • Mohammad Hemmat esfe
Associate Professor, Faculty of Engineering and Technology, Imam Hossein University, Tehran, Iran
چکیده [English]

In this study, for the first time, the thermal behavior of TiO2 (85%) / MWCNT (15%) - (CH2OH) 2 (50%) / H2O (50%) hybrid nanofluid thermal behavior is investigated. The thermal conductivity of the nanofluid is determined by KD2 PRO at fractional volumes of  φ =0.03% -0.6% and temperatures of T = 28 ° C-50 ° C. Nanoscale and nanoparticle structure validation are performed using transmission electron microscopy (TEM) and scanning (SEM) and X-ray diffraction (XRD) analysis tools. Experimental results of laboratory analyzes have shown that with increasing temperature and volume fraction, relative thermal conductivity (RTC) is increasing and the amount of this increase is more severe for volume fraction than temperature. The statistical results of experimental analysis showed that the minimum and maximum increase in thermal conductivity of nanofluid compared to the base fluid are 1.6% and 17.9%, respectively. The modeling of the response surface for the relative thermal conductivity of nanofluid showed that the values of R2 and Adj R2 were equal to 0.9882 and 0.9860, respectively, and the MOD value was between -1 and +1.

کلیدواژه‌ها [English]

  • Hybrid nanofluid
  • Thermal conductivity
  • Brownie motion
  • Response surface method
  • Laboratory method
  • Correlation
  1. C. Maxwell. "A treatise on electricity and magnetism." Clarendon Press google schola 2 (1873): 3408-3425.
  2. U. Choi, and J.A. Eastman. Enhancing thermal conductivity of fluids with nanoparticles. No. ANL/MSD/CP-84938; CONF-951135-29. Argonne National Lab.(ANL), Argonne, IL (United States), 1995.
  3. B. Colak. "Experimental study for thermal conductivity of water‐based zirconium oxide nanofluid: developing optimal artificial neural network and proposing new correlation." International Journal of Energy Research 45, no. 2 (2021): 2912-2930.
  4. S. Rostami, D. Toghraie, B. Shabani, N. Sina, P. Barnoon . "Measurement of the Thermal Conductivity of Mwcnt-Cuo/Water Hybrid Nanofluid Using Artificial Neural Networks (Anns)." Journal of Thermal Analysis Barnoon and Calorimetry. 143, no. 2 (2021): 1097-105.
  5. R. Pourrajab, A. Noghrehabadi, M. Behbahani, and E. Hajidavalloo. "An efficient enhancement in thermal conductivity of water-based hybrid nanofluid containing MWCNTs-COOH and Ag nanoparticles: experimental study." Journal of Thermal Analysis and Calorimetry 143 (2021): 3331-3343.
  6. R. Yan, R. Kalbasi, Q. Nguyen, and A. Karimipour. "Rheological behavior of hybrid MWCNTs-TiO2/EG nanofluid: a comprehensive modeling and experimental study." Journal of Molecular Liquids 308 (2020): 113058.
  7. J. Choi, M.S. Park, S.H. Kim, S.P. Jang. "Experimental Study on the Effect of Nanoparticle Migration on the Convective Heat Transfer Coefficient of Eg/Water-Based Al2o3 Nanofluids." International Journal of Heat, and Mass Transfer. 169 (2021): 120903.
  8. Wen, G. Zhu, and L. Lu. "Experimental and artificial neural network based study on the heat transfer and flow performance of ZnO-EG/water nanofluid in a mini-channel with serrated fins." International Journal of Thermal Sciences 170 (2021): 107149.
  9. Jiang, H. Li, C. Zan, F. Wang, Q. Yang, and L. Shi. "Temperature dependence of the stability and thermal conductivity of an oil-based nanofluid." Thermochimica Acta 579 (2014): 27-30.
  10. S. Liu, M.C.C. Lin, I.T. Huang, W. Chi-Chuan . "Enhancement of Thermal Conductivity with Carbon Nanotube for Nanofluids." International communications in heat and mass transfer. 32, no. 9 (2005): 1202-10.
  11. H. Esfe, S. Alidoust, E. Mohammadnejad Ardeshiri, and D. Toghraie. "The effect of different parameters on ability of the proposed correlations for the rheological behavior of SiO2-MWCNT (90: 10)/SAE40 oil-based hybrid nano-lubricant and presenting five new correlations." ISA transactions 128 (2022): 488-497.
  12. Parsaiemehr, F. Pourfattah, O. Ali Akbari, D. Toghraie, and G. Sheikhzadeh. "Turbulent flow and heat transfer of Water/Al2O3 nanofluid inside a rectangular ribbed channel." Physica E: Low-Dimensional Systems and Nanostructures 96 (2018): 73-84.
  13. Lee, S.S. Choi, S.A. Li, and J.A. Eastman. "Measuring thermal conductivity of fluids containing oxide nanoparticles." (1999): 280-289.
  14. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L.J. Thompson. "Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles." Applied physics letters 78, no. 6 (2001): 718-720.
  15. U.S Choi, Z. George Zhang, W. Yu, F.E. Lockwood, and E.A. Grulke. "Anomalous thermal conductivity enhancement in nanotube suspensions." Applied physics letters 79, no. 14 (2001): 2252-2254.
  16. Ç. Yıldız, M. Arıcı, and H. Karabay. "Comparison of a theoretical and experimental thermal conductivity model on the heat transfer performance of Al2O3-SiO2/water hybrid-nanofluid." International Journal of Heat and Mass Transfer 140 (2019): 598-605.
  17. R. Safaei, A. Hajizadeh, M. Afrand, C. Qi, H. Yarmand, and N. Wahidah Binti Mohd Zulkifli. "Evaluating the effect of temperature and concentration on the thermal conductivity of ZnO-TiO2/EG hybrid nanofluid using artificial neural network and curve fitting on experimental data." Physica A: Statistical Mechanics and its Applications 519 (2019): 209-216.
  18. Kumar, and R. Rekha Sahoo. "Viscosity and thermal conductivity comparative study for hybrid nanofluid in binary base fluids." Heat Transfer—Asian Research 48, no. 7 (2019): 3144-3161.
  19. Taherialekouhi, S. Rasouli, and A. Khosravi. "An experimental study on stability and thermal conductivity of water-graphene oxide/aluminum oxide nanoparticles as a cooling hybrid nanofluid." International Journal of Heat and Mass Transfer 145 (2019): 118751.
  20. Shojaie Chahregh, and S. Dinarvand. "TiO2-Ag/blood hybrid nanofluid flow through an artery with applications of drug delivery and blood circulation in the respiratory system." International Journal of Numerical Methods for Heat & Fluid Flow 30, no. 11 (2020): 4775-4796.
  21. Abbas, H. Muhammad Ali, T. Raza Shah, H. Babar, M.M. Janjua, U. Sajjad, and M. Amer. "Nanofluid: Potential evaluation in automotive radiator." Journal of molecular liquids 297 (2020): 112014.
  22. Li, R. Kalbasi, Q. Nguyen, and M. Afrand. "Effects of Sonication Duration and Nanoparticles Concentration on Thermal Conductivity of Silica-Ethylene Glycol Nanofluid under Different Temperatures: An Experimental Study." Powder Technology. 367 (2020): 464-73.
  23. Akhgar, and D. Toghraie. "An experimental study on the stability and thermal conductivity of water-ethylene glycol/TiO2-MWCNTs hybrid nanofluid: developing a new correlation." Powder Technology 338 (2018): 806-818.
  24. A. Hamid, , W.H. Azmi, M.F. Nabil, and R Mamat. "Improved Thermal Conductivity of Tio2–Sio2 Hybrid Nanofluid in Ethylene Glycol and Water Mixture." Paper presented at the IOP Conference series: materials science and engineering, 2017.
  25. P. Singh, K. Sharma, and A.K. Tiwari. "An experimental investigation of thermal conductivity of TiO2 nanofluid: proposing a new correlation." (2019).
  26. Mukherjee, , S. Chakrabarty, P. Chandra Mishra, and P. Chaudhuri. "Transient heat transfer characteristics and process intensification with Al2O3-water and TiO2-water nanofluids: An experimental investigation." Chemical Engineering and Processing-Process Intensification 150 (2020): 107887.
  27. H. Esfe, S. Wongwises, A. Naderi, A. Asadi, M.R. Safaei, H. Rostamian, M. Dahari, and A. Karimipour. "Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation." International communications in heat and mass transfer 66 (2015): 100-104.
  28. Abdul Hamid, W.H. Azmi, R Mamat, and N.A. Usri. "Thermal conductivity enhancement of TiO2 nanofluid in water and ethylene glycol (EG) mixture." (2016).
  29. S. Khedkar, N. Shrivastava, S.S. Sonawane, and K.L. Wasewar. "Experimental investigations and theoretical determination of thermal conductivity and viscosity of TiO2–ethylene glycol nanofluid." International Communications in Heat and Mass Transfer 73 (2016): 54-61.
  30. H. Esfe, S.M. Motallebi, and M. Bahiraei. "Employing response surface methodology and neural network to accurately model thermal conductivity of TiO2–water nanofluid using experimental data." Chinese Journal of Physics 70 (2021): 14-25.
  31. Moradi, M. Zareh, M. Afrand, and M. Khayat. "Effects of temperature and volume concentration on thermal conductivity of TiO2-MWCNTs (70-30)/EG-water hybrid nano-fluid." Powder Technology 362 (2020): 578-585.
  32. Afrand,. "Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation." Applied Thermal Engineering 110 (2017): 1111-1119.
  33. Zadkhast, D. Toghraie, and A. Karimipour. "Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation." Journal of Thermal Analysis and Calorimetry 129 (2017): 859-867.
  34. H. Esfe, W.M. Yan, M. Akbari, A. Karimipour, and M. Hassani. "Experimental study on thermal conductivity of DWCNT-ZnO/water-EG nanofluids." International Communications in Heat and Mass Transfer 68 (2015): 248-251.
  35. Corcione,. "Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids." Energy conversion and management 52, no. 1 (2011): 789-793.
  36. Panahi Moghadam, M. Afrand, S.M. Hamad, A.A. Barzinjy, and P. Talebizadehsardari. "Curve-fitting on experimental data for predicting the thermal-conductivity of a new generated hybrid nanofluid of graphene oxide-titanium oxide/water." Physica A: Statistical Mechanics and its Applications 548 (2020): 122140.
  37. Vaughn. "ASHRAE Research Report: 2017-2018." ASHRAE Journal 60, no. 10 (2018): 73-84.
  38. Lee Hamilton, and O.K. Crosser. "Thermal conductivity of heterogeneous two-component systems." Industrial & Engineering chemistry fundamentals 1, no. 3 (1962): 187-191.
  39. C. Maxwell. A treatise on electricity and magnetism: Pt. III. Magnetism. pt. IV. Electromagnetism. Vol. 2. Clarendon press, 1881.