[1] P. Qin, and Q. Xue. “Compact wideband LNA with gain and input matching bandwidth extensions by transformer.” IEEE Microwave Wireless Component Letter, 27 (2017): 657-659.
[2] Z. Li. “Low-noise and high-gain wideband LNA with gm-boosting technique.” Electronics Letters, 49 (2013): 1126-1128.
[3] A.P. Tarighat, and M.Yargholi. “Low power active shunt feedback CMOS low noise amplifier for wideband wireless systems.” Integration, 69 (2019): 189-197.
[4] A. Bozorg, and B. Staszewski. “A 0.02–4.5-GHz LN(T)A in 28-nm CMOS for 5G exploiting noise reduction and current reuse.” IEEE Journal of Solid-State Circuits, 56 (2020): pp. 404-415.
[5] E.A. Sobhy, A.A. Helmy, S. Hoyos, K. Entesari, and E. Sánchez-Sinencio. "A 2.8-mW sub-2-dB noise-figure inductorless wideband CMOS LNA employing multiple feedback." IEEE Transactions on Microwave Theory and Techniques 59, no. 12 (2011): 3154-3161.
[6] A. Liscidini, M. Brandolini, D. Sanzogni, and R Castello. “A 0.13 μm CMOS front-end, for DCS1800/UMTS/802.11b-g with Multiband positive feedback low-noise amplifier.” IEEE Journal of Solid-State Circuits, 41 (2006): 981–989.
[7] S. Asgaran, M.J. Deen, and C.H. Chen. “A 4-mW monolithic CMOS LNA at 5.7 GHZ with the gate resistance used for input matching.” IEEE Microwave Wireless Component Letter, 16 (2006): 188–190.
[8] F. Daryabari, A. Zahedi, A. Rezaei, and M. Hayati. "Low-power ultra-wideband LNA employing CS–CD current-reuse and gain-controller resistor technique in 0.180-μm CMOS technology." Analog Integrated Circuits and Signal Processing 101, no. 2 (2019): 187-199.
[9] P. Donyaran1, and B. Heidari. “Assessing a Noise Reduction Method for a Low-Noise Amplifier.” Tabriz Journal of Electrical Engineering (TJEE), 51 (2021): 195-203.
[10] J. Chaqaei, A. Jalali, and J. Mazloum. "Inductor-less differential low-noise amplifier design with active and passive Gm enhancement for radiology." Tabriz Journal of Electrical Engineering (TJEE), 50 (2019): 85-76. (In Persian)
[11] B. Bijari, and M. Sheykhi. “1.3 to 10.6 GHz ultra-wideband low-noise amplifier with new input matching network.” Tabriz Journal of Electrical Engineering (TJEE), 49 (2020): 518-529. (In Persian)
[12] B. Liu, C. Wang, M. Ma, and S. Guo. “An ultra-low-voltage and ultra-low-power 2.4 GHz LNA design.” Radioengineering, 18 (2009): 527-531.
[13] C. Chang, J. Chen, and Y. Wang. “A fully integrated 5 GHz low-voltage LNA using forward body bias technology.” IEEE Microwave and Wireless Components Letters, 19 (2009): 176-178.
[14] M. Mazidabadi Farahani, J. Mazloum, and M. Fouladian. “An ultra-wideband low noise amplifier with cascaded flipped-active inductor for cognitive radio applications.” Elsevier Integration, 93 (2023).
[15] M. Bekaran, M. Taskhiri, and S.A. Asayesh. "UWB low noise amplifier using inverting technique with inductive peaking." Scientific Journal of Applied Electromagnetics, 10 (2022): 109-120. (In Persian)
[16] S. Saraslani, and A. Golmkani, "Ultra wide band low noise amplifier using resistive feedback and current reuse structure." Journal of Iranian Association of Electrical and Electronics Engineers, 20 (2023): 97-104. (In Persian)
[17] C.F. Liao, and S.I. Liu. “A broadband noise-canceling CMOS LNA for 3.1–10.6-GHz UWB receivers.” IEEE Journal of Solid-State Circuits, 42 (2007): 329–339.
[18] M.T. Hsu, Y.C. Chang, and Y.Z. Huang. “Design of low power UWB LNA based on common source topology with current-reused technique.” Microelectronics Journal, 44 (2013): 1223–1230.
[19] A. Galal, R. Pokharel, H. Kanaya, and K.Yoshida. “High linearity technique for ultra-wideband low noise amplifier in 0.18μm CMOS technology.” AEU-International Journal of Electronics and Communications, 66 (2012): 12-17.
[20] C.H. Wu, Y.S. Lin, and C.C. Wang. “A 3.1–10.6-GHz current-reused CMOS ultra-wideband low-noise amplifier using self-forward body bias and forward combining techniques.” Microwave and Optical Technology Letters, 55 (2013): 2296–2302.
[21] B.M. Jafari, and M. Yavari. “A UWB CMOS low-noise amplifier with noise reduction and linearity improvement techniques.” Microelectronics journal, 46 (2015): 198–206, 2015.
[22] S. Arshad, R. Ramzan, K. Muhammad, and Q. Wahab. “A sub-10 mW, noise cancelling, wideband LNA for UWB applications.” AEU-International Journal of Electronics and Communications, 69 (2015): 109–118.