تحلیل و شبیه‌سازی رفتار سیالات غیرنیوتنی محلول در آب درون‌استوانه‌های دوار غیر هم‌مرکز

نوع مقاله : مقاله مکانیک

نویسندگان

1 عضو هیئت علمی دانشکده مکانیک دانشگاه صنعتی اراک، اراک، ایران

2 کارشناسی ، دانشکده مکانیک دانشگاه صنعتی اراک

3 دانشجوی دکتری ، دانشکده مهندسی مکانیک ، دانشگاه کاشان

4 هیئت علمی دانشکده مکانیک دانشگاه صنعتی اراک

چکیده

در تحقیق حاضر به مطالعه و بررسی جریان‌‌ سیال عبوری از بین‌استوانه‌های حلقوی غیرهم مرکز پرداخته ‌شد‌‌ه است. بدین منظور از چندین سیال غیرنیوتنی محلول در آب، در مقایسه با آب استفاده شده است. مدل سیالات غیرنیوتنی بر اساس مدل پاورلو و شبیه سازی جریان آشفته در محیط سه بعدی به روش k-ω انجام شده است. تغییرات سرعت ‌استوانه دوار داخلی و در نتیجه تغییرات سرعت شعاعی، سرعت محوری و سرعت مماسی سیالات در امتداد صفحات انتخاب شده بررسی گردید. همچنین انرژی جنبشی توربولانس و تنش برشی روی دیواره‌‌‌های ‌استوانه‌‌‌ها نیز که از عوامل موثر در جریان سیال می‌باشد مورد تحلیل و بررسی قرار گرفتند. میزان کاهش و افزایش تنش و تغییرات رفتار رئولوژیکال برای سیالات مورد بررسی با یکدیگر مقایسه شدند که دو سیال XG، CMC بیشترین شباهت با خواص رئولوژیکال آب را دارا بودند. شبیه‌سازی‌‌‌های صورت گرفته با نتایج تجربی موجود در ادبیات فن مقایسه گردید که تطابق خوبی با نتایج بدست آمده ملاحظه شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulation of the Behavior of Non-Newtonian Fluids Dissolved in Water Inside Non-Concentric Rotating Cylinders

نویسندگان [English]

  • Abolfazl Hajizadeh Aghdam 1
  • Mohamadjavad Ebrahimi 2
  • Ahmad Beytolahi Tavakoli 3
  • AmirHossein Refahi 4
1 Assis. Prof., Mech. Eng., Arak university of Technology., Arak, Iran
2 M.sc. Student, Mech. Eng., Arak university of Technology., Arak, Iran
3 Ph.D Student, Kasahn University, Kashan, Iran
4 Assis. Prof., Mech. Eng., Arak university of Technology., Arak, Iran
چکیده [English]

The study and investigation of the currents passing through non-concentric annular cylinders is of great importance due to its application in many fields such as oil and petrochemical industries. Oil well drilling is an example of this application. In the current research, non-Newtonian fluid is considered between two non-concentric cylinders rotating. The changes in the speed of the rotating cylinder and as a result the changes in the radial speed, axial speed, and tangential speed of the fluids were investigated along the selected planes. Turbulence kinetic energy and shear stress on the cylinder walls, which are effective factors in fluid flow, were also analyzed and investigated. Also, in this research, a study was conducted on several non-Newtonian fluids, such as bentonite, carboxyl methyl cellulose, and xanthan gum dissolved in water, in comparison with water. Two fluids, XG and CMC, had the most similarities with the rheological properties of water, while the XG fluid kept its rheological properties at high speeds. The simulations were compared with the experimental results available in the literature, and a good agreement was observed between the results.
.

کلیدواژه‌ها [English]

  • Non-Newtonian fluids
  • Non-concentric cylinders
  • Shear stress
[1] M.P. Escudier, P.J. Oliveira, and F.T. Pinho. "Fully developed laminar flow of purely viscous non-Newtonian liquids through annuli, including the effects of eccentricity and inner-cylinder rotation." International journal of heat and fluid flow 23, no. 1 (2002): 52-73.
[2] J.M. Nouri, and J.H. Whitelaw. "Flow of Newtonian and non-Newtonian fluids in an eccentric annulus with rotation of the inner cylinder." International Journal of Heat and Fluid Flow 18, no. 2 (1997): 236-246.
[3] D.O.A. Cruz, and F.T. Pinho. "Skewed Poiseuille-Couette flows of sPTT fluids in concentric annuli and channels." Journal of non-newtonian fluid mechanics 121, no. 1 (2004): 1-14.
[4] V.C. Kelessidis, and G.E. Bandelis. “Flow Patterns and Minimum Suspension Velocity for Efficient Cuttings Transport in Horizontal and Deviated Wells in Coiled-Tubing Drilling”. SPE-81746-PA 19. no.04 (2004) 213-227.
[5] M.P.P.J. Escudier, P.J. Oliveira, F. Pinho, and S. Smith. "Fully developed laminar flow of non-Newtonian liquids through annuli: comparison of numerical calculations with experiments." Experiments in fluids 33 (2002): 101-111.
[6] A. Gavrilov, A. Minakov, A. Dekterev and V.Y. Rudyak. “A numerical algorithm for modeling laminar flows in an annular channel with eccentricity”. Journal of Applied and Industrial Mathematics 5. no.4 (2011): 559-568.
[7] H.Shu. Dou. "Stability of taylor-couette flow between concentric rotating cylinders." In Origin of Turbulence: Energy Gradient Theory, pp. 271-304. Singapore: Springer Singapore, 2022.
[8] D. Kumar, K. Ramesh, and S. Chandok. "Mathematical modeling and simulation for the flow of magneto-Powell-Eyring fluid in an annulus with concentric rotating cylinders." Chinese Journal of Physics 65 (2020): 187-197.
[9] S.M. Han, Y.J Kim, N.S. Woo, and Y.K. Hwang. "A study on the solid-liquid 2 phase helical flow in an inclined annulus." Journal of mechanical science and technology 22 (2008): 1914-1920.
[10] Z. Wang, and B. Sun. “Annular multiphase flow behavior during deep water drilling and the effect of hydrate phase transition”. Petroleum Science 6. no.1 (2009): 57-63.
[11] Y.Ju. Kim, and Y.K. Hwang. "Experimental study on the vortex flow in a concentric annulus with a rotating inner cylinder." KSME international journal 17, no. 4 (2003): 562-570.
[12]  M. Sharifi Asl, D. Toghraie, and A. Azimian. "Numerical simulation of convective heat transfer in a turbulant non-Newtonian nanofluid flow through a horizontal circular tube." Journal of Modeling in Engineering 16, no. 53 (2018): 113-120 (in persian)
[13] U. Eberhard, H.J. Seybold, M. Floriancic, P. Bertsch, J. Jiménez-Martínez, J.S. Andrade Jr, and M. Holzner. "Determination of the effective viscosity of non-Newtonian fluids flowing through porous media." Frontiers in Physics 7 (2019): 71.