مدل ریاضی چند دوره‌ای جهت بهینه سازی مصرف انرژی خانگی با ارائه زمان‌بندی تجهیزات خانه هوشمند و محاسبه هزینه سلول خورشیدی جهت نصب در خانه هوشمند

نوع مقاله : مقاله صنایع

نویسندگان

1 کارشناس ارشد، دانشکده فناوری های صنعتی، دانشگاه صنعتی ارومیه، ارومیه، ایران

2 استادیار، دانشکده فناوری های صنعتی ، دانشگاه صنعتی ارومیه، ارومیه، ایران

چکیده

خانه هوشمند مجهز به مجموعه‌ای از لوازم خانگی قابل برنامه‌ریزی برای استفاده در ساعاتی از شبانه‌روز است که قیمت انرژی پایین‌تر دارد. در اکثر تحقیقات انجام شده در زمینه مدیریت انرژی خانه هوشمند، سعی در ارائه یک مدل ریاضی جهت برنامه‌ریزی و زمان‌بندی لوازم خانگی قابل برنامه‌ریز برای روز آینده است زیرا در اغلب کشورهای جهان، شرکت‌های توزیع انرژی، قیمت‌های انرژی را بصورت روزانه برای روز آینده اعلام می‌کنند در حالیکه در برخی از کشورها نظیر ایران قیمت انرژی در طول یک هفته، یک ماه یا حتی یک سال ثابت است. در بسیاری از تحقیقات پیشین در صورتیکه خانه هوشمند متصل به انرژی تجدیدپذیر در نظر گرفته شده باشد بیشتر تمرکز بر روی فروش انرژی به شبکه است و تامین انرژی مورد نیاز خانه توسط انرژی تجدیدپذیر در الویت بعدی است. در این تحقیق دو مدل ریاضی عدد صحیح چند دوره‌ای ارائه شده است که می‌توان برای برنامه‌ریزی روزانه، هفتگی، ماهانه و حتی سالانه خانه هوشمند در نظر گرفت. مدل ریاضی اول بدون اتصال به انرژی تجدیدپذیر از نوع سلول خورشیدی توسعه داده شده است و مدل ریاضی دوم متصل به سلول خورشیدی است که برای رفع نیاز انرژی مورد نیاز خانه هوشمند تا حد امکان تعبیه شده است. مدل‌های ریاضی پیشنهادی با استفاده از سالور CPLEX در نرم افزار GAMS حل شده است و در نهایت با مقایسه قیمت بدست آمده توسط دو مدل پیشنهادی، قیمت سلول خورشیدی با توان تولیدی مورد نظر محاسبه شده است.  نتایج بدست آمده حاکی از کاهش قابل توجه هزینه‌های مصرف انرژی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Multi-Period Mathematical Model to Optimize Smart Home Energy Management with Scheduling of Appliances and Solar Cell Cost Calculation

نویسندگان [English]

  • Morteza Jafari Nikpey 1
  • Farid Momayezi 2
1 MSc, Faculty of Industrial Engineering, Urmia University of Technology, Urmia, Iran
2 Assistant Professor, Faculty of Industrial Engineering, Urmia University of Technology, Urmia, Iran
چکیده [English]

The smart home is equipped with programmable home appliances designed to be used during off-peak hours when energy prices are lower. Research in smart home energy management has focused on developing mathematical models for planning and scheduling programmable appliances for the next day. While many countries announce daily energy prices for the following day, some countries, like Iran, have fixed energy prices for longer durations. Previous research has primarily focused on selling energy back to the grid when considering smart homes connected to renewable energy sources. Meeting the home's energy needs with renewable energy is a secondary priority. This study presents two mathematical models for multi-period planning daily, weekly, monthly, and yearly of a smart home. The first model does not consider the integration of solar cells, while the second model is connected to solar cells to maximize the use of renewable energy. The proposed mathematical models are solved using the CPLEX solver embedded in the GAMS software.
By comparing the prices obtained from the two models, the cost of solar cells with the desired production capacity is calculated. The results demonstrate a significant reduction in energy consumption costs. These models provide optimized schedules for operating appliances in a smart home, taking into account fluctuating energy prices. The integration of solar cells enables homeowners to leverage renewable energy sources and reduce reliance on the grid.

کلیدواژه‌ها [English]

  • Home energy management system
  • Smart home
  • Photovoltaic
  • Solar cell
  • Scheduling
  • Household appliances
[1] U.S. Ahmad, M. Usman, S. Hussain, A. Jahanger, and M. Abrar. "Determinants of renewable energy sources in Pakistan: An overview." Environmental Science and Pollution Research. (2022): 1-19
[2] W. Kuczynski, and K. Chliszcz. "Energy and exergy analysis of photovoltaic panels in northern Poland." Renewable and Sustainable Energy Reviews.)  2023 (:113138.
[3] M. Rawa, Y. Al-Turki, K. Sedraoui, S. Dadfar, and M. Khaki. "Optimal operation and stochastic scheduling of renewable energy of a microgrid with optimal sizing of battery energy storage considering cost reduction." Journal of Energy Storage 59 (2023): 106475.
[4] H. Ritchie, , M. Roser, and P. Rosado. "CO₂ and greenhouse gas emissions". Our world in data. )2020(.
[5] E. Vrain, and C. Wilson. "Social networks and communication behaviour underlying smart home adoption in the UK." Environmental Innovation and Societal Transitions. )2021(:82-97.
[6] W. Li, T. Logenthiran, V.T. Phan, and W.L. Woo. "A novel smart energy theft system (SETS) for IoT-based smart home." IEEE Internet of Things Journal 6, no. 3 (2019): 5531-5539.
[7] Amirion, M. and M. Allaei. "optimal planning of household consumption using a load response model and considering the well-being of residents." Modeling in Engineering 21, no. 72 )2023(: 69-82. (inpersian)
[8] S.S. Hussain, A. Tak, T.S. Ustun, and I. Ali. "Communication modeling of solar home system and smart meter in smart grids." IEEE Access 6 (2018): 16985-16996.
[9] A. Manur, M. Marathe, A. Manur, A. Ramachandra, S. Subbarao, and G. Venkataramanan. "Smart solar home system with solar forecasting." In 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), pp. 1-6. IEEE, 2020.
[10] S.S. Mohammadi, and M.D Pierre. "Presenting a new meta-heuristic algorithm based on forbidden search to solve the task scheduling problem in cloud and fog computing based system." Modeling in Engineering. )2020(: 13-29 (in persian)
[11] M. Alilou, B. Tousi, and H. Shayeghi. "Home energy management in a residential smart micro grid under stochastic penetration of solar panels and electric vehicles." Solar Energy, )2020(: 6-18.
[12] M. Alizadeh, M. Jafari Nokundi, and Y. Sultan Moradi. "Modeling and optimization of energy consumption in a smart home with the presence of energy storage, solar cell, electric car and load response." Modeling in Engineering. )2019(: 215-226 (in persian)
[13] B. Yu, F. Sun, C. Chen, G. Fu, and L. Hu. "Power demand response in the context of smart home application." Energy 240 (2022): 122774.
[14] U. ur Rehman, K. Yaqoob, and M.A. Khan. "Optimal power management framework for smart homes using electric vehicles and energy storage". International Journal of Electrical Power & Energy Systems 134. (2022):  107358.
[15] M. Lu "Smart Home Systems and the Well-being of People at Home". )2019(, Savannah College of Art and Design.
[16] M.S. Aliero, K.N. Qureshi, M.F. Pasha, and G. Jeon. "Smart Home Energy Management Systems in Internet of Things networks for green cities demands and services." Environmental Technology & Innovation 22 (2021): 101443.
[17] X. Hou, J. Wang, T. Huang, T. Wang, and P. Wang. "Smart home energy management optimization method considering energy storage and electric vehicle." IEEE access 7 (2019): 144010-144020.
[18] M. Farrokhifar, F. Momayyezi, N. Sadoogi, and A. Safari. "Real-time based approach for intelligent building energy management using dynamic price policies." Sustainable cities and society 37 (2018): 85-92.
[19] M. Rahmani-Andebili, "Scheduling deferrable appliances and energy resources of a smart home applying multi-time scale stochastic model predictive control". Sustainable Cities and Society. )2017(: 338-347.
[20] F. Yılmaz, and Y. Eren. "A novel load profile generation method based on the estimation of regional usage habit parameters with genetic algorithm". Electric Power Systems Research. )2023(: 109165.
[21] F.A. Qayyum, M. Naeem, A.S. Khwaja, A. Anpalagan, L.Guan, and B. Venkatesh. "Appliance scheduling optimization in smart home networks." IEEE access 3 (2015): 2176-2190.
[22] A. Anvari-Moghaddam, H. Monsef, and A. Rahimi-Kian. "Optimal smart home energy management considering energy saving and a comfortable lifestyle". IEEE Transactions on Smart Grid. )2014(: 324-332.
[23] A. Manzoor, M.A. Judge, F. Ahmed, S. Islam, and R. Buyya. "Towards simulating the constraint-based nature-inspired smart scheduling in energy intelligent buildings." Simulation Modelling Practice and Theory 118 (2022): 102550.
[24] M. Tostado-Véliz, D. Icaza-Alvarez, and F. Jurado. "A novel methodology for optimal sizing photovoltaic-battery systems in smart homes considering grid outages and demand response". Renewable Energy. )2021(: 884-896.
[25] S. Zhang, J. Rong, and B. Wang. "An optimal scheduling scheme for smart home electricity considering demand response and privacy protection". International Journal of Electrical Power & Energy Systems.                                  )2021(: 107159.
[26] C. Wang, Y. Zhou, B. Jiao, Y. Wang, W. Liu, and D. Wang. "Robust optimization for load scheduling of a smart home with photovoltaic system." Energy Conversion and Management 102 (2015): 247-257.
[27] B.Yuce, Y. Rezgui, and M. Mourshed. "ANN–GA smart appliance scheduling for optimised energy management in the domestic sector." Energy and Buildings. )2016(: 311-325.
[28] O.E. Dragomir, and F. Dragomir. "Application of Scheduling Techniques for Load-Shifting in Smart Homes with Renewable-Energy-Sources Integration." in Buildings )2023(: 134
[29] X. Chen, T. Wei, and S. Hu. "Uncertainty-aware household appliance scheduling considering dynamic electricity pricing in smart home." IEEE Transactions on Smart Grid. )2013(: 932-941.
[30] T. AlSkaif, A.C. Luna, M.G. Zapata, J.M. Guerrero, and B. Bellalta. "Reputation-based joint scheduling of households appliances and storage in a microgrid with a shared battery." Energy and Buildings 138 (2017): 228-239.
[31] Z. Iqbal, N. Javaid, S. Iqbal, S. Aslam, Z.A. Khan, W. Abdul, A. Almogren, and A. Alamri. "A domestic microgrid with optimized home energy management system". Energies. )2018(: 1002.
[32] M. Elkazaz, M. Sumner, S. Pholboon, R. Davies, and D. Thomas. "Performance assessment of an energy management system for a home microgrid with PV generation." Energies 13, no. 13 (2020): 3436.
[34] A. Akbari-Dibavar, S. Nojavan, B. Mohammadi-Ivatloo, and K. Zare, “Smart home energy management using hybrid robust-stochastic optimization” Comput. Ind. Eng. )2020(: 106425.
[34] S. Sharda, K. Sharma, and M. Singh. "A real-time automated scheduling algorithm with PV integration for smart home prosumers". Journal of Building Engineering. )2021(: 102828.
[35] S. Sharda, K. Sharma, and M. Singh. "A real-time automated scheduling algorithm with PV integration for smart home prosumers". Journal of Building Engineering. )2021(: 102828.
[36] M. Hasan, , T.I. Talukder, F.T.Z. Saima, M.N.U. Joy, A. Das, and M.N.H. Sheham. "Smart Home Automation System Powered by Renewable Energy." In 2022 IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE), pp. 1-7. IEEE, 2022.
[37] R. Khezri, A. Mahmoudi, and H. Aki. "Optimal planning of solar photovoltaic and battery storage systems for grid-connected residential sector: Review, challenges and new perspectives." Renewable and Sustainable Energy Reviews. )2022(: 111763.
[38] H. Aminnejhad, S. Kazeminia, and M. Aliasghary. "Robust sliding-mode control for maximum power point tracking of photovoltaic power systems with quantized input signal." Optik. )2021(: 167983.