[1] I. Dincer. "Renewable energy and sustainable development: a crucial review." Renewable and Sustainable Energy Reviews 4, no. 2 (2000): 157-175.
[2] I. Dincer, and Marc A. Rosen. "A worldwide perspective on energy, environment and sustainable development." International Journal of Energy Research 22, no. 15 (1998): 1305-1321.
[3] I. Dincer, and M.A. Rosen. "Energy, environment and sustainable development." Applied Energy 64, no. 1-4 (1999): 427-440.
[4] M. Hatami, M.D. Boot, D.D. Ganji, and M. Gorji-Bandpy. "Comparative study of different exhaust heat exchangers effect on the performance and exergy analysis of a diesel engine." Applied Thermal Engineering 90 (2015): 23-37.
[5] M. Hatami, D.D. Ganji, and M. Gorji-Bandpy. "Experimental and numerical analysis of the optimized finned-tube heat exchanger for OM314 diesel exhaust exergy recovery." Energy Conversion and Management 97 (2015): 26-41.
[6] H. Ghaebi, M. Amidpour, S. Karimkashi, and O. Rezayan. "Energy, exergy and thermoeconomic analysis of a combined cooling, heating and power (CCHP) system with gas turbine prime mover." International Journal of Energy Research 35, no. 8 (2011): 697-709.
[7] H. Ghaebi, M.H. Saidi, and P. Ahmadi. "Exergoeconomic optimization of a trigeneration system for heating, cooling and power production purpose based on TRR method and using evolutionary algorithm." Applied Thermal Engineering 36 (2012): 113-125.
[8] M.F. Orhan, I. Dincer, G.F. Naterer, and M.A. Rosen. "Coupling of copper–chloride hybrid thermochemical water splitting cycle with a desalination plant for hydrogen production from nuclear energy." International Journal of Hydrogen Energy 35, no. 4 (2010): 1560-1574.
[9] J. Uche, L. Serra, and A. Valero. "Thermoeconomic optimization of a dual-purpose power and desalination plant." Desalination 136, no. 1-3 (2001): 147-158.
[10] M. Zamen, M. Amidpour, and S.M. Soufari. "Cost optimization of a solar humidification–dehumidification desalination unit using mathematical programming." Desalination 239, no. 1-3 (2009): 92-99.
[11] Y. Wang, and N. Lior. "Performance analysis of combined humidified gas turbine power generation and multi-effect thermal vapor compression desalination systems—Part 1: The desalination unit and its combination with a steam-injected gas turbine power system." Desalination 196, no. 1-3 (2006): 84-104.
[12] M. Ameri, S. Seif Mohammadi, M. Hosseini, and M. Seifi. "Effect of design parameters on multi-effect desalinationsystem specifications." Desalination 245, no. 1-3 (2009): 266-283.
[13] A. Trostmann. "Improved approach to steady state simulation of multi-effect distillation plants." Desalination and Water Treatment 7, no. 1-3 (2009): 93-110.
[14] S.E. Shakib, M. Amidpour, and C. Aghanajafi. "Simulation and optimization of multi effect desalination coupled to a gas turbine plant with HRSG consideration." Desalination 285 (2012): 366-376.
[15] S.E. Shakib, M. Amidpour, and C. Aghanajafi. "A new approach for process optimization of a METVC desalination system." Desalination and Water Treatment 37, no. 1-3 (2012): 84-96.
[16] P. Fiorini, and E. Sciubba. "Thermoeconomic analysis of a MSF desalination plant." Desalination 182, no. 1-3 (2005): 39-51.
[17] H. Sayyaadi, and A. Saffari. "Thermoeconomic optimization of multi effect distillation desalination systems." Applied Energy 87, no. 4 (2010): 1122-1133.
[18] H. Sayyaadi, A. Saffari, and A. Mahmoodian. "Various approaches in optimization of multi effects distillation desalination systems using a hybrid meta-heuristic optimization tool." Desalination 254, no. 1-3 (2010): 138-148.
[19]. Y.Wang, N.Lior. "Performance analysis of combined humidified gas turbine power generation and multi-effect thermal vapor compression desalination systems, part 2: the evaporative gas turbine based system and some discussions." Desalination 207, no. 1-3 (2007): 243–256.
[20] A.S.M. Nafey. "Design and simulation of seawater thermal desalination plants." PhD diss., University of Leeds, 1988.
[21] H. Ettouney, H. El‐Dessouky, Y. Al‐Roumi. "Analysis of mechanical vapour compression desalination process." International Journal of Energy Research 23, no. 5 (1999): 431-451.
[22] G. Aly. "Computer simulations of multiple-effect FFE-VC systems for water desalination." Desalination 45, no. 2 (1983): 119-131.
[23] N.H. Aly, and A.K. El-Figi. "Mechanical vapor compression desalination systems—a case study." Desalination 158, no. 1-3 (2003): 143-150.
[24] Y.M. El-Sayed. "Thermoeconomics of some options of large mechanical vapor-compression units." Desalination 125, no. 1-3 (1999): 251-257.
[25] V. Mohammad-Razdari, S.A. Fanaee. " Comprehensive review of different types of water desalination." Journal of Renewable and New Energy 8, no. 1 (2021): 21-32.
[26] Heİdarnejad, Parisa. "Exergy based optimization of a biomass and solar fuelled CCHP hybrid seawater desalination plant." Journal of Thermal Engineering 3, no. 1 (2017): 1034-1043.
[27] Z. Song, T. Liu, and Q. Lin. "Multi-objective optimization of a solar hybrid CCHP system based on different operation modes." Energy 206 (2020): 118125.
[28] L. Kang, X. Wu, X. Yuan, K. Ma, Y. Wang, J. Zhao, and Q. An. "Influence analysis of energy policies on comprehensive performance of CCHP system in different buildings." Energy 233 (2021): 121159.
[29] M. Deymi-Dashtebayaz, and M. Norani. "Sustainability assessment and emergy analysis of employing the CCHP system under two different scenarios in a data center." Renewable and Sustainable Energy Reviews 150 (2021): 111511.
[30] S.A. Fanaee, R. Kheiri, A. Edalati-nejad, and M. Ghodrat. "Novel design for tri-generation cycle with Parabolic Trough Collector: An exergy-economic analysis." Thermal Science and Engineering Progress 24 (2021): 100871.
[31] M. Szega, Piotr Żymełka, and T. Janda. "Improving the accuracy of electricity and heat production forecasting in a supervision computer system of a selected gas-fired CHP plant operation." Energy 239 (2022): 122464.
[32] S. Khanmohammadi, and F. Musharavati. "Multi-generation energy system based on geothermal source to produce power, cooling, heating, and fresh water: exergoeconomic analysis and optimum selection by LINMAP method." Applied Thermal Engineering 195 (2021): 117127.
[33] S.R. Safavi, C. Copeland, T. Niet, and G. McTaggart-Cowan. "Combined cooling, heat and power for commercial buildings: Optimization for hydrogen-methane blend fuels." Applied Thermal Engineering 231 (2023): 120982.
[34] W. Yu, Y. Xu, H. Wang, Z. Ge, J. Wang, D. Zhu, and Y. Xia. "Thermodynamic and thermoeconomic performance analyses and optimization of a novel power and cooling cogeneration system fueled by low-grade waste heat." Applied Thermal Engineering 179 (2020): 115667.
[35] A. Bejan, G. Tsatsaronis, and M.J. Moran. Thermal design and optimization. John Wiley & Sons, 1995.
[36] M.A. Darwish, and A.A. El-Hadik. "The multi-effect boiling desalting system and its comparison with the multi-stage flash system." Desalination 60, no. 3 (1986): 251-265.
[37] YA. Cengel, MA. Boles . Thermodynamics: an engineering approach. McGraw-Hill, New York, ABD, 1994.
[38] KE. Herold, R. Radermacher, SA. Klein . Absorption chillers and heat pumps, CRC press, 2016.
[39] Kızılkan, Önder, Arzu Şencan, and Soteris A. Kalogirou. "Thermoeconomic optimization of a LiBr absorption refrigeration system." Chemical Engineering and Processing: Process Intensification 46, no. 12 (2007): 1376-1384.
[40] T. Kotas. The Exergy Analysis Method of Thermal Plant Analysis, Krieger. Melbourne, Australia, 1995.
[41] M. Mishra, P. Kumar Das, and S. Sarangi. "Optimum design of crossflow plate-fin heat exchangers through genetic algorithm." International Journal of Heat Exchangers 5, no. 2 (2004): 379-402.
[42] A. Şencan, K.A. Yakut, and S.A. Kalogirou. "Exergy analysis of lithium bromide/water absorption systems." Renewable Energy 30, no. 5 (2005): 645-657.