بررسی دینامیک مولکولی خواص مکانیکی ژرمانیوم تقویت شده با نانوذره آهن در سرعت های مختلف

نوع مقاله : مقاله مکانیک

نویسندگان

مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

با توجه به کاربرد وسیع ژرمانیوم در دستگاه­های نانو و چگالی بالای آن نسبت به سیلیکون و احتمال دررفتگی و انتشار آن در مرز دانه‌ها، بهبود خواص آن از اهمیت بالایی برخوردار است. در این مطالعه به کمک روش دینامیک مولکولی در مقیاس بزرگ، بهبود خواص مکانیکی ژرمانیوم با استفاده از عبور دادن ذرات کروی شکل آهن بر روی آن مورد مطالعه قرار گرفته است. در این شبیه­سازی نیروهای بین‌اتمی برای ژرمانیوم به‌صورت TERSOFF و آهن به‌صورت EAM و اندرکنش­های بین آن­ها با پتانسیل LJ تعریف شده است. پس از متعادل­سازی سیستم در هنگرد NPT  و حرکت نانوذره آهن با سرعت­های متفاوت تست کشش با نرخ کرنش  0.01 1/psانجام شده است. نتایج نشان می­دهند که برهمکنش واندروالس بین ژرمانیوم و ذرات آهن ایجاد شده است. این برهمکنش‌ها باعث محکم‌تر شدن پیونده‌ای بین‌اتمی ژرمانیوم شده و مدول یانگ و تنش حد نهایی ژرمانیوم به 119 و 24 گیگا پاسکال رسیده که به ترتیب 10 و 9 درصد نسبت به ژرمانیوم خالص بهبود داشته است. همچنین با افزایش سرعت نانو ذرات آهن تا سرعت 0.005 آنگستروم بر پیکوثانیه جاذبه اتمی بیشتر شده و این پدیده باعث استحکام مکانیکی بیشتر در ساختار پایه می­شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Molecular Dynamics Investigation of the Mechanical Properties of Germanium Reinforced with Iron Nanoparticles at Different Speeds

نویسندگان [English]

  • Majid Samadiyan
  • Masoud Ajri
Department of Mechanical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

Considering the wide application of germanium in nano devices and its high density compared to silicon and the possibility of its dislocation and diffusion in grain boundaries, improving its properties is of great importance. In this study, with the help of large-scale molecular dynamics method, improving the mechanical properties of germanium by passing spherical iron particles on it has been studied. In this simulation, the interatomic forces for germanium are defined as TERSOFF and for iron as EAM and the interactions between them are defined with the LJ potential. After balancing the system in the NPT ring and moving the iron nanoparticle at different speeds, a tensile test was performed with a strain rate of 0.01 1/ps. The results show that the van der Waals interaction between germanium and iron particles has been established. These interactions made the bonds between the atoms of germanium stronger, and the Young's modulus and ultimate stress of germanium reached 119 and 24 GPa, which were 10 and 9% better than pure germanium, respectively. Furthermore, by increasing the speed of iron nanoparticles up to the speed of 0.005 Angstroms per picosecond, the atomic attraction increases and this phenomenon causes more mechanical strength in the basic structure.

کلیدواژه‌ها [English]

  • Reinforced germanium
  • Iron nanoparticles
  • Mechanical properties
  • Molecular dynamics
[1] M.G. Bader. "Handbook of Composite Reinforcements." International Materials Reviews 39, no. 3 (1994): 123-124.
[2] Y. Orooji, E. Ghasali, M. Moradi, M.R. Derakhshandeh, M. Alizadeh, M. Shahedi Asl, and T. Ebadzadeh. "Preparation of Mullite-Tib2-Cnts Hybrid Composite through Spark Plasma Sintering." Ceramics International 45, no. 13 (2019): 16288-16296.
[3] H. Karimi-Maleh, M.L. Yola, N. Atar, Y. Orooji, F. Karimi, P.S. Kumar, J. Rouhi, and M. Baghayeri. "A Novel Detection Method for Organophosphorus Insecticide Fenamiphos: Molecularly Imprinted Electrochemical Sensor Based on Core-Shell Co3o4@ Mof-74 Nanocomposite." Journal of Colloid and Interface Science 592 (2021): 174-185.
[4] M.H. Esfe, S. Alidoust, S. Esfandeh, D. Toghraie, H. Hatami, M.H. Kamyab, and E. Mohammadnejad Ardeshiri. "Theoretical-Experimental Study of Factors Affecting the Thermal Conductivity of Swcnt-Cuo (25: 75)/Water Nanofluid and Challenging Comparison with Cuo Nanofluids/Water." Arabian Journal of Chemistry 16, no. 5 (2023): 104689.
[5] H. Xiao-Peng, and H. Xiu-Lan. "Molecular Dynamics Simulation of Thermal Conductivity in Si–Ge Nanocomposites." Chinese Physics Letters 25, no. 8 (2008): 2973.
[6] M.A. Hemmatpour Khotbesara, M. Ajri, and M. Samadiyan. "Mechanical Properties Analysis of a Monolayer Biphenylene at Different Temperatures." Journal of Modeling in Engineering  (2023) (in Persian).
[7] M. Samadian, M. Ajri, A. Azizi, and M.A. Hemmatpour-Khotbesara. "Investigating the Pinhole Effect on the Mechanical Properties of Biphenylene." Applied Physics A 129, no. 12 (2023): 826.
[8] A. Karimdoost Yasuri, M. Izadi, and H. Hatami. "Numerical Study of Natural Convection in a Square Enclosure Filled by Nanofluid with a Baffle in the Presence of Magnetic Field." Iranian Journal of Chemistry and Chemical Engineering 38, no. 5 (2019): 209-220.
[9] M.H. Esfe, S.N. Hosseini Tamrabad, H. Hatami, S. Alidoust, and D. Toghraie. "Using the Rsm to Evaluate the Rheological Behavior of Sio2 (60%)-Mwcnt (40%)/Sae40 Oil Hybrid Nanofluid and Investigating the Effect of Different Parameters on the Viscosity." Tribology International 184 (2023): 108479.
[10] B. Faria, C. Guarda, N. Silvestre, and J.N. Canongia Lopes. "Cnt-Reinforced Iron and Titanium Nanocomposites: Strength and Deformation Mechanisms." Composites Part B: Engineering 187 (2020): 107836.
[11] J. Hua, Z. Duan, C. Song, and Q. Liu. "Molecular Dynamics Study on the Tensile Properties of Graphene/Cu Nanocomposite." International Journal of Computational Materials Science and Engineering 6, no. 03 (2017): 1750021.
[12] D.K. Ward, W.A. Curtin, and Y. Qi. "Mechanical Behavior of Aluminum–Silicon Nanocomposites: A Molecular Dynamics Study." Acta Materialia 54, no. 17 (2006): 4441-4451.
[13] A.K. Srivastava, M.K. Dikshit, V.K. Pathak, and L. Khurana. "A Molecular Dynamics Study of the Buckling Behaviour of Graphene-Reinforced Aluminum Nanocomposite Plate." Materials Physics and Mechanics 42 (2019): 234-241.
[14] A. Dadrasi, A.R. Albooyeh, and A.H. Mashhadzadeh. "Mechanical Properties of Silicon-Germanium Nanotubes: A Molecular Dynamics Study." Applied Surface Science 498 (2019): 143867.
[15] M.H. Rahman, E.H. Chowdhury, and M. Mahbubul Islam. "Understanding Mechanical Properties and Failure Mechanism of Germanium-Silicon Alloy at Nanoscale." Journal of Nanoparticle Research 22 (2020): 1-12.
[16] J.M. Escalante. "Non-Linear Behavior of Germanium Electronic Band Structure under High Strain." Computational Materials Science 152 (2018): 223-227.
[17] G. Maggioni, F. Sgarbossa, E. Napolitani, W. Raniero, V. Boldrini, S.M. Carturan, D.R. Napoli, and D.D. Salvador. "Diffusion Doping of Germanium by Sputtered Antimony Sources." Materials Science in Semiconductor Processing 75 (2018): 118-123.
[18] D. Dideban, A. Ketabi, M. Vali, A.H. Bayani, and H. Heidari. "Tuning the Analog and Digital Performance of Germanene Nanoribbon Field Effect Transistors with Engineering the Width and Geometry of Source, Channel and Drain Region in the Ballistic Regime." Materials Science in Semiconductor Processing 80 (2018): 18-23.
[19] M.H. Esfe, S. Alidoust, S.N. Hosseini Tamrabad, D. Toghraie, and H. Hatami. "Thermal Conductivity of Mwcnt-Tio2/Water-Eg Hybrid Nanofluids: Calculating the Price Performance Factor (Ppf) Using Statistical and Experimental Methods (Rsm)." Case Studies in Thermal Engineering 48 (2023): 103094.
[20] E.P. Roth, J.R. Matey, A.C. Anderson, and D.A. Johns. "Application of Germanium Resistance Thermometers Below 0.1 K." Review of Scientific Instruments 49, no. 6 (1978): 813-816.
[21] M. Pirmoradian, D. Toghraie, and R. Sabetvand. "Molecular Dynamics Study of the Mechanical Properties of Reinforced Silicon Structure with Iron Nanoparticles." Computational Materials Science 199 (2021): 110749.
[22] H.M. Aktulga, J.C. Fogarty, S.A. Pandit, and A.Y. Grama. "Parallel Reactive Molecular Dynamics: Numerical Methods and Algorithmic Techniques." Parallel Computing 38, no. 4-5 (2012): 245-259.
[23] S. Plimpton. "Fast Parallel Algorithms for Short-Range Molecular Dynamics." Journal of Computational Physics 117, no. 1 (1995): 1-19.
[24] S.J. Plimpton, and A.P. Thompson. "Computational Aspects of Many-Body Potentials." MRS Bulletin 37, no. 5 (2012): 513-521.
[25] J. Tersoff. "Modeling Solid-State Chemistry: Interatomic Potentials for Multicomponent Systems." Physical Review B 39, no. 8 (1989): 5566.
[26] A.K. Rappé, C.J. Casewit, K.S. Colwell, W.A. Goddard III, and W.M. Skiff. "Uff, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations." Journal of the American Chemical Society 114, no. 25 (1992): 10024-10035.
[27] A. Arkundato, Z. Su'ud, M. Abdullah, and W. Sutrisno. "Molecular Dynamic Simulation on Iron Corrosion-Reduction in High Temperature Molten Lead-Bismuth Eutectic." Turkish Journal of Physics 37, no. 1 (2013): 132-144.
[28] J. Tersoff. "New Empirical Approach for the Structure and Energy of Covalent Systems." Physical Review B 37, no. 12 (1988): 6991.
[29] E. Hairer, C. Lubich, and G. Wanner. "Geometric Numerical Integration Illustrated by the Störmer–Verlet Method." Acta Numerica 12 (2003): 399-450.
[30] G.H Bryan. "Elementary Principles in Statistical Mechanics." Nature Publishing Group UK London, 1902.
[31] S. Nosé. "A Unified Formulation of the Constant Temperature Molecular Dynamics Methods." The Journal of Chemical Physics 81, no. 1 (1984): 511-519.
[32] W.G. Hoover. "Canonical Dynamics: Equilibrium Phase-Space Distributions." Physical Review A 31, no. 3 (1985): 1695.
[33] J. Vanhellemont, and E. Simoen. "Brother Silicon, Sister Germanium." Journal of the Electrochemical Society 154, no. 7 (2007): H572.
[34] X. Wu, J.S. Kulkarni, G. Collins, N. Petkov, D. Almecija, J.J. Boland, D. Erts, and J.D. Holmes. "Synthesis and Electrical and Mechanical Properties of Silicon and Germanium Nanowires." Chemistry of Materials 20, no. 19 (2008): 5954-5967.
[35] R. Komanduri, N. Chandrasekaran, and L.M. Raff. "Molecular Dynamic Simulations of Uniaxial Tension at Nanoscale of Semiconductor Materials for Micro-Electro-Mechanical Systems (Mems) Applications." Materials Science and Engineering: A 340, no. 1-2 (2003): 58-67.