[1] E.L. Rooy. "Introduction to aluminum and aluminum alloys." In Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, pp. 3-14. ASM International, 1990.
[2] G.S. Cole, and A.M. Sherman. "Light weight materials for automotive applications." Materials Characterization 35, no. 1 (1995): 3-9.
[3] A. Sverdlin. "Properties of pure aluminum." In Encyclopedia of Aluminum and Its Alloys, Two-Volume Set (Print), pp. 2060-2089. CRC Press, 2018.
[4] R.B. Rebak. "Iron-chrome-aluminum alloy cladding for increasing safety in nuclear power plants." EPJ Nuclear Sciences & Technologies 3 (2017): 34.
[5] J. Konys, W. Krauss, and N. Holstein. "Aluminum-based barrier development for nuclear fusion applications." Corrosion 67, no. 2 (2011): 026002-1.
[6] M.H. Al Hasa, M. Masrukan, and A.S. Adhi. "Materials Development and Hardness Properties of Aluminum Alloy." Applied Mechanics and Materials 575 (2014): 83-87.
[7] C. Lobascio, M. Briccarello, R. Destefanis, M. Faraud, G. Gialanella, G. Grossi, V. Guarnieri et al. "Accelerator-based tests of radiation shielding properties of materials used in human space infrastructures." Health Physics 94, no. 3 (2008): 242-247.
[8] H.M. Qadr. "Calculation of gamma-ray attenuation parameters for aluminium, iron, zirconium and tungsten." Вопросы атомной науки и техники (2020).
[9] S.P. Shirmardi, M. Shamsaei, and M. Naserpour. "Comparison of photon attenuation coefficients of various barite concretes and lead by MCNP code, XCOM and experimental data." Annals of Nuclear Energy 55 (2013): 288-291.
[10] A. Abdel-Haseiba, Z. Ahmeda, and M.M. Hassanb. "Investigation of the gamma rays attenuation coefficients by experimental and MCNP simulation for polyamide 6/acrylonitrile-butadiene–styrene blends." J Nucl Radiat Phys 13, no. 1 (2018): 81-89.
[11] M. Esfandiari, S.P. Shirmardi, and M.E. Medhat. "Element analysis and calculation of the attenuation coefficients for gold, bronze and water matrixes using MCNP, WinXCom and experimental data." Radiation Physics and Chemistry 99 (2014): 30-36.
[12] Swinehart, Donald F. "The beer-lambert law." Journal of Chemical Education 39, no. 7 (1962): 333.
[13] Y. Abraham, N.A.W. Holzwarth, and R.T. Williams. "Electronic structure and optical properties of CdMoO 4 and CdWO 4." Physical Review B 62, no. 3 (2000): 1733.
[14] S.L. Fritz, and L.T. Cook. "High‐resolution digital x‐ray detector utilizing a discrete array of CdWO4 scintillators and a self‐scanned photodiode array." Medical Physics 14, no. 2 (1987): 244-248.
[15] L.S. Waters, G.W. McKinney, J.W. Durkee, M.L. Fensin, J.S. Hendricks, M.R. James, R.C. Johns, and D.B. Pelowitz. "The MCNPX Monte Carlo radiation transport code." In AIP conference Proceedings, vol. 896, no. 1, pp. 81-90. American Institute of Physics, 2007.
[16] R. Zhang, J.D. Fontenot, D. Mirkovic, J.S. Hendricks, and W.D. Newhauser. "Advantages of MCNPX-based lattice tally over mesh tally in high-speed Monte Carlo dose reconstruction for proton radiotherapy." Nuclear Technology 183, no. 1 (2013): 101-106.
[17] A. Taheri, S. Heidary, and H. Shahrabi. "Monte Carlo simulation of a SPECT system: GATE, MCNPX or SIMIND?(a comparative study)." Journal of Instrumentation 12, no. 12 (2017): P12022.
[18] S. Yıldırım, A. Tugrul, B. Buyuk, and E. Demir. "Gamma attenuation properties of some aluminum alloys." Acta Physica Polonica A 129, no. 4 (2016): 813-815.
[19] M.J. Berger, and J.H. Hubbell. XCOM: Photon cross sections on a personal computer. No. NBSIR-87-3597. National Bureau of Standards, Washington, DC (USA). Center for Radiation Research, 1987.
[20] W.Z. Majeed, N.B. Naji, S.D. Mohammed, and N. Fawzi. "Attenuation coefficient of reactive powder concrete using different energies." International Journal of Advanced Research 4, no. 7 (2016): 72-82.
[21] F. Seif, M.J. Tahmasebi-Birgani, and M.R. Bayatiani. "An analytical-empirical calculation of linear attenuation coefficient of megavoltage photon beams." Journal of Biomedical Physics & Engineering 7, no. 3 (2017): 225.
[22] B.N. Ghafoor, and Y.H. Shawn. "Investigate shielding of standard materials and glass for stopping 660 keV gamma ray penetrations." Tikrit Journal of Pure Science 28 (2023): 2.