طراحی یک سیستم تولید سلولی پویا و پایدار با در نظرگرفتن میزان مصرف انرژی و نیروی انسانی در برنامه‌ریزی تولید

نوع مقاله : مقاله صنایع

نویسندگان

1 گروه مهندسی صنایع، دانشگاه پیام نور، تهران، ایران

2 گروه مهندسی صنایع، دانشکده مهندسی ، دانشگاه بوعلی سینا، همدان، ایران

چکیده

طراحی و برنامه‌ریزی سیستم‌های تولید سلولی در اکثر مدل‌های کلاسیک بر مبنای به حداقل رساندن هزینه‌های تولید یا افزایش سود تولیدکنندگان انجام شده است. در صورتی که با گسترش سیستم‌های تولیدی و افزایش تقاضا برای محصولات، نگرانی‌ها در خصوص مسائل زیست‌محیطی و مصرف بی رویه منابع تجدیدناپذیر افزایش یافته است. از طرفی، توجه به کارگران و ایمنی محیط کار در ایجاد یک سیستم تولید پایدار، بعنوان امری حیاتی معرفی شده است. در این مقاله یک مدل ریاضی چندهدفه جدید برای ایجاد سیستم تولید سلولی پایدار با توجه به موارد ذکر شده ارائه شده تا علاوه بر بهینه‌سازی اثرات زیست محیطی سیستم تولید، هزینه‌های تولید را نیز به حداقل برساند. در واقع مدل پیشنهادی به عنوان یک سیستم تولید سلولی پایدار به دنبال راه‌حلی برای ایجاد یک سیستم تولیدی است که در آن برای تولیدکنندگان، محیط زیست و کارگران ارزش‌افزوده ایجاد شود. در ادامه، مدل با استفاده از روش اپسیلون محدودیت حل شده و جواب‌های متنوعی به صورت جبهه پارتو برای تصمیم‌گیری ارائه گردید. با توجه به NP-hard بودن مدل پیشنهادی و عدم توانایی نرم‌افزار گمز در یافتن جواب‌های بهینه برای مسائل در مقیاس بزرگ، یک الگوریتم ژنتیک مرتب‌سازی غیرمغلوب (NSGA-II) برای حل آن ارائه شده است. نتایج نشان داد، روش فراابتکاری زمان حل را حداقل به میزان سه برابر نسبت به روش اپسیلون محدودیت، کاهش داده است؛ همچنین کاهش سطح خطرات محیطی منجر به افزایش هزینه‌های تولید شده است. در نهایت، کاربردپذیری مدل پیشنهادی در یک کارگاه تولید تجهیزات کشاورزی به صورت مطالعه موردی مورد بررسی قرار گرفته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Designing a Dynamic and Sustainable Cellular Manufacturing System by Considering the Amount of Energy Consumption and Manpower in Production Planning

نویسندگان [English]

  • Nader Ghanei 1
  • Gholam Reza Esmaeilian 1
  • Amir Saman Kheirkhah 2
1 Department of Industrial Engineering, Payame Noor University, Tehran, Iran
2 Department of Industrial Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran
چکیده [English]

The design and planning of cellular Manufacturing systems in most classical models is based on minimizing production costs or increasing producers' profits. With the expansion of production systems and the increase in demand for products, concerns about environmental issues and excessive consumption of non-renewable resources have increased. On the other hand, paying attention to workers and the safety of the work environment has been introduced as a vital issue in creating a sustainable Manufacturing system. In this article, a new multi-objective mathematical model for creating a sustainable cellular Manufacturing system is presented according to the mentioned items in order to minimize the production costs in the system in addition to optimizing the environmental effects of the Manufacturing system. In the following, the model was solved using the epsilon constraint method and various solutions were presented in the form of a Pareto front for decision making. Due to the NP-hardness of the proposed model and the inability of the GAMS software to find optimal solutions for large-scale problems, a non-dominant sorting genetic algorithm (NSGA-II) is presented to solve it. The results showed that the meta-heuristic method has reduced the solution time by at least three times compared to the epsilon constraint method; Also, reducing the level of environmental risks has led to an increase in production costs. Finally, the applicability of the proposed model in an agricultural equipment production workshop has been investigated as a case study.

کلیدواژه‌ها [English]

  • Dynamic cellular manufacturing system
  • Energy scaling
  • Production planning
  • Epsilon-constraint method
  • NSGA-II algorithm
[1] V. Sharma,  and N. Dheeraj. "Cellular manufacturing system: a descriptive bibliometric analysis, framework, implementation steps and future research direction." Benchmarking: An International Journal 31, no. 6 (2024): 1976-2001.
[2] E.R. Hosseinabad, and M.A.U. Zaman. "A brief review on cellular manufacturing and group technology." Research Journal of Management Reviews 5, no. 1 (2020): 1-20.
[3] P. Asokan, G. Prabhakaran, and G.S. Kumar. "Machine-cell grouping in cellular manufacturing systems using non-traditional optimisation techniques-A comparative study." The International Journal of Advanced Manufacturing Technology 18 (2001): 140-147.
[4] S. Singh, E.U. Olugu, and S.N. Musa. "Development of sustainable manufacturing performance evaluation expert system for small and medium enterprises." Procedia CIRP 40 (2016): 608-613.
[5] J. Jafarzadeh, H.A. Khalili, and N. Shoja. "A multiobjective optimization model for a dynamic and sustainable cellular manufacturing system under uncertainty." Computational Intelligence and Neuroscience 2022, no. 1 (2022): 1334081. (in Persian)
[6] P. Renna, S. Materi, and M. Ambrico. "Review of responsiveness and sustainable concepts in cellular manufacturing systems." Applied Sciences 13, no. 2 (2023): 1125.
[7] R. YounesSinaki, A. Sadeghi, H. Mosadegh, N. Almasarwah, and G. Suer. "Cellular manufacturing design 1996–2021: A review and introduction to applications of Industry 4.0." International Journal of Production Research 61, no. 16 (2023): 5585-5636.
[8] J.G. Nahr, M. Bathaee, A. Mazloumzadeh, and H. Nozari. "Cell production system design: a literature review." International Journal of Innovation in Management, Economics and Social Sciences 1, no. 1 (2021): 16-44.
[9] M. Lashgari, R. Kia, and F. Jolai. "Robust optimisation to design a dynamic cellular manufacturing system integrating group layout and workers' assignment." European Journal of Industrial Engineering 15, no. 3 (2021): 319-351.
[10] M. Rheault, J.R. Drolet, and G. Abdulnour. "Dynamic cellular manufacturing system (DCMS)." Computers & Industrial Engineering 31, no. 1-2 (1996): 143-146.
[11] T.E. Graedel, and B.R. Allenby. "Industrial ecology and sustainable engineering." (Prentice Hall) (2010).
[12] H. Bakhshi-Khaniki, and S.M.T. Fatemi-Ghomi. "Integrated Dynamic Cellular Manufacturing Systems and Hierarchical Production Planning with Worker Assignment and Stochastic Demand." International Journal of Engineering 36, no. 2 (2023): 348-359. (in Persian)
[13] M.B. Fakhrzad, F. Barkhordary, and A.J. Afari-Nodoushan. "A mathematical model for dynamic cell formation problem based on scheduling, worker allocation, and financial resources constraint." Industrial Management Journal 13, no. 3 (2022): 435-463. (in Persian)
[14] A.M. Golmohammadi, M.M. Gohareh, and M. Karbasian. "Proposing an efficient mathematical model for the continuous layout design in a cellular manufacturing system The real-case of BATA company." Research in Production and Operations Management 13, no. 1 (2022): 25-50. (in Persian)
[15] K. Forghani, and S.M.T. Fatemi-Ghomi. "Joint cell formation, cell scheduling, and group layout problem in virtual and classical cellular manufacturing systems." Applied Soft Computing 97 (2020): 106719.
[16] M. Sakhaii, R. Tavakkoli-Moghaddam, M. Bagheri, and B. Vatani. "A robust optimization approach for an integrated dynamic cellular manufacturing system and production planning with unreliable machines." Applied Mathematical Modelling 40, no. 1 (2016): 169-191.
[17] M. Rafiee, V. Kayvanfar, A. Mohammadi, and F. Werner. "A robust optimization approach for a cellular manufacturing system considering skill-leveled operators and multi-functional machines." Applied Mathematical Modelling 107 (2022): 379-397.
[18] K. Deep. "Machine cell formation for dynamic part population considering part operation trade-off and worker assignment using simulated annealing-based genetic algorithm." European Journal of Industrial Engineering 14, no. 2 (2020): 189-216.
[19] H. Feng, W. Da, L. Xi, E. Pan, and T. Xia. "Solving the integrated cell formation and worker assignment problem using particle swarm optimization and linear programming." Computers & Industrial Engineering 110 (2017): 126-137.
[20] F. Bagheri, A.S. Safaei, M. Kermanshahi, and M.M. Paydar. "Robust design of dynamic cell formation problem considering the workers interest." International Journal of Engineering 32, no. 12 (2019): 1790-1797.
[21] H. Bouaziz, M. Berghida, and A. Lemouari, "Solving the generalized cubic cell formation problem using discrete flower pollination algorithm," Expert Systems with Applications 150 (2020): 113345.
[22] R. Ghodsi, S. Mostafayi, Z. Mansouri, and M. Bakhtiari. "Designing a bi-objective integrating mathematical model for dynamic sustainable cellular manufacturing systems considering production planning." J Appl Mech Eng 4, no. 6 (2015): 7.
[23] K. Forghani, S.M.T. Fatemi-Ghomi, and R. Kia. "Group layout design of manufacturing cells incorporating assembly and energy aspects." Engineering Optimization 54, no. 5 (2022): 770-785.
[24] H.R. Ebrahimi, K. Kianfar, and M. Bijari. "Scheduling a cellular manufacturing system based on price elasticity of demand and time-dependent energy prices." Computers & Industrial Engineering 159 (2021): 107460.
[25] J. Wang, and C. Liu. "A priority rule based heuristic for virtual cellular manufacturing system with energy consumption. In IEEE 15th International Conference on Networking, Sensing and Control (ICNSC) p. 1-5. 2018.
[26] H. Raoofpanah, V.R. Ghezavati, and R. Tavakkoli-Moghaddam. "Solving a new robust green cellular manufacturing problem with environmental issues under uncertainty using Benders decomposition." Engineering Optimization 51, no. 7 (2019): 1229-1250.
[27] R. Kumar, and S. P. Singh. "Simulated annealing-based embedded meta-heuristic approach to solve bi-objective robust stochastic sustainable cellular layout." Global Journal of Flexible Systems Management 19 (2018): 69-93.
[28] K. Lamba, R. Kumar, S. Mishra, and S. Rajput. "Sustainable dynamic cellular facility layout: A solution approach using simulated annealing-based meta-heuristic." Annals of Operations Research 290 (2020): 5-26.
[29] M. Imran, C. Kang, Y. H. Lee, M. Jahanzaib, and H. Aziz. "Cell formation in a cellular manufacturing system using simulation integrated hybrid genetic algorithm." Computers & Industrial Engineering 105 (2017): 123-135.
[30] E. Bozoklar, and E. Yılmaz. "Designing Sustainable Flexible Manufacturing Cells with Multi-Objective Optimization Models." Applied Sciences 14, no. 1 (2023): 203.
[31] S. Khatibi, M.K. Bafruei, and M. Rahmani. "Multi objective Model of airport gate scheduling problem using NSGA-II algorithm and epsilon constraint." Journal of Modeling in Engineering 15, no. 51 (2017): 397-410. (in Persian)
[32] O. Abedinia, and N. Amjady. "Optimal Distribution of Reactive Power based on Shark Smell Optimization with Pareto Criterion in Power System." Journal of Modeling in Engineering 14, no. 45 (2016): 133-144. (in Persian)
[33] M.S. Javadi, M. Lotfi, A. Ashraf, A. E. Nezhad, M. Gough, and J. PS. Catalao "A Multi-Objective Model for Home Energy Management System Self-Scheduling using the Epsilon-Constraint Method. " 2020 IEEE 14th Int. In Conf. Compat. Power Electron. Power Eng., Setubal, Portugal. 2020.
[34] A. Abdi, and M. Hajiaghaei-Keshteli. "Multi-Objective Closed-loop Supply Chain Considering Vehicles and Solving by New Approaches in Metaheuristics." Journal of Modeling in Engineering 17, no. 59 (2019): 67-85. (in Persian)
[35] Y. Esmaeelzadeh, and H. Sahebi. "A reverse logistics supply chain network design for municipal solid waste Case Study: Shiraz City." Journal of Modeling in Engineering 17, no. 56 (2019): 313-325. (in Persian)
[36] S. Ghayebloo, F. Fathipour, and M. Alimohammadi. "Developing a multi-objective mathematical programming model for compost supply chain design regarding the produced compost quality and environmental sustainability." Journal of Modeling in Engineering 20, no. 71 (2022): 189-208. (in Persian)
[37] Y. Haimes. "On a bicriterion formulation of the problems of integrated system identification and system optimization." IEEE Transactions on Systems, Man, and Cybernetics 3 (1971): 296-297.
[38] J.F. Bérubé, M. Gendreau, and J.Y. Potvin. "An exact ϵ-constraint method for bi-objective combinatorial optimization problems: Application to the Traveling Salesman Problem with Profits." European Journal of Operational Research 194, no. 1 (2009): 39-50.
[39] A. Liefooghe, S. Verel, and J.K. Hao. "A hybrid metaheuristic for multiobjective unconstrained binary quadratic programming." Applied Soft Computing 16 (2014): 10-19.
[40] K. Devika, A. Jafarian, and V. Nourbakhsh. "Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques." European Journal of Operational Research 235, no. 3 (2014): 594-615.
[41] M.B. Fakhrzad, and R. Lotfi. "Green vendor managed inventory with backorder in two echelon supply chain with epsilon-constraint and NSGA-II approach." Journal of Industrial Engineering Research in Production Systems 5, no. 11 (2018): 193-209. (in Persian)
[42] K. Deb, A. Pratap, S. Agarwal, and T.A.M.T. Meyarivan. "A fast and elitist multiobjective genetic algorithm: NSGA-II." IEEE Transactions on Evolutionary Computation 6, no. 2 (2002): 182-197.
 
[43] A. Cheraghalipour, M. Hajiaghaei-Keshteli, and M.M. Paydar. "Tree Growth Algorithm (TGA): A novel approach for solving optimization problems." Engineering Applications of Artificial Intelligence 72 (2018): 393-414.
[44] F. Jolai, H. Asefi, M. Rabiee, and P. Ramezani. "Bi-objective simulated annealing approaches for no-wait two-stage flexible flow shop scheduling problem." Scientia Iranica 20, no. 3 (2013): 861-872. (in Persian)
[45] R. Motahari, Z. Alavifar, A. Zareh-Andaryan, Maxwell Chipulu, and Morteza Saberi. "A multi-objective linear programming model for scheduling part families and designing a group layout in cellular manufacturing systems." Computers & Operations Research 151 (2023): 106090.
[46] H. Zhang, Y. Wu, R. Pan, and G. Xu. "Two-stage parallel speed-scaling machine scheduling under time-of-use tariffs." Journal of Intelligent Manufacturing 32 (2021): 91-112.