بکارگیری مدل چند مرحله ای مبتنی بر ریسک در پروسه برنامه‌ریزی بهینه چندهدفه شبکه میکرو انرژی با روش اپسیلون مقید پیشرفته

نوع مقاله : مقاله برق

نویسندگان

1 دانشکده مهندسی برق، دانشگاه صنعتی سیرجان، سیرجان، ایران

2 دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

امروزه با توجه به نگرانی آلودگی و گازهای گلخانه ­ای، تولید یک انرژی پاک و استفاده از انرژی‌های تجدیدپذیر به بهترین نحو (با بازدهی بالا) مسئله بسیار مهمی‌است. اگر چه همیشه اهداف اقتصادی از اهداف زیست محیطی بیشتر مورد توجه قرار ‌گرفته است، اما در این مقاله، در برنامه‌ریزی بهینه پیشنهادی سیستم در شبکه میکروانرژی ملاحظات بیشتری به منظور در نظرگیری مسئله زیست محیطی صورت گرفته است. این سیستم بهینه، سیستم هاب انرژی را که بخش اصلی شبکه میکروانرژی است، به صورت شبکه مبتنی بر CCHP که با انرژی‌های تجدیدپذیر ترکیب شده است، مورد مطالعه قرار می‌دهد. این سیستم از سه هاب انرژی و دستگاه‌های ذخیره ­ساز و مبدل انرژی استفاده می‌کند. از این رو در این مقاله، یک چارچوب برنامه‌ریزی چندمرحله‌ای برای سیستم هاب انرژی و برای بهینه کردن عملکرد آن شامل کاهش آلودگی و هزینه عملیاتی پیشنهاد شده است. در این مدل برای توان تولیدی توسط منابع انرژی تجدیدپذیر حدود بالا و پایین در نظر گرفته شده است تا بیانگر احتمال انقطاع توان به دلیل نوسانات آن­ها باشد. همچنین، با در نظر گرفتن چندین تابع هدف میتوان شرایط تصمیم­ گیری بهینه را برای اپراتور تصمیم ­گیرنده تضمین کرد. برای حل مسئله چند هدفه در این مقاله از روش اپسیلون پیشرفته استفاده شده است. علاوه برآن در این مقاله دو روش تصمیم­ گیری بهینه پیشنهاد و با یکدیگر مقایسه شده اند. نتایج بدست آمده پس از اجرای مدل پیشنهادی نشان­ دهنده کارایی مدل در کاهش هزینه و آلودگی زیست محیطی می ­باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Risk-Based Multi-Stage Model Employment in the Multi-Objective Optimal Scheduling Process of Micro-Energy Grid Using Augmented Epsilon-Constrained Concept

نویسندگان [English]

  • Seyyed Mostafa Nosratabadi 1
  • Ali Peivand 2
  • Morteza Jadidoleslam 1
1 Department of Electrical Engineering, Sirjan University of Technology, Sirjan, Iran
2 Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

Today, due to the concern of emission and greenhouse gases, generation of a clean energy and using renewable energies in the best way (with high efficiency) is a very important issue. Although economic goals have always been more important than environmental goals. In this paper, more considerations have been made in order to consider the environmental issue in the proposed optimal scheduling of the system in the micro energy grid. This optimal system studies the energy hub system, which is the main part of the micro-energy grid, in the form of a CCHP-based network combined with renewable energies. This system uses three energy hubs, energy storage, and converter devices. Therefore, in this paper, a multi-stage planning framework is proposed for the energy hub system and to optimize its performance, including reducing emission and operational cost. In this model, upper and lower limits are considered for the power produced by renewable energy sources to indicate the possibility of power interruption due to their fluctuations. Also, by considering multiple objective functions, optimal decision conditions can be guaranteed for the decision operator. To solve the multi-objective problem, the augmented epsilon-constraint method is used. In addition, two optimal decision-making methods have been proposed and compared too. The results obtained after the implementation of the proposed model show the efficiency of the model in reducing the cost and environmental emission.

کلیدواژه‌ها [English]

  • Multi-Stage modeling
  • Augmented epsilon-constraint method
  • Micro-Energy grid
  • Multi-Objective modeling
  • Energy hub
  • CCHP
[1] S.M. Nosratabadi, H.N. Moshizi, and J.M. Guerrero. "Strategy for demand side management effectiveness assessment via a stochastic risk-based bidding approach in a multi-energy microgrid containing combined cooling, heat and power and photovoltaic units." IET Renewable Power Generation 16, no. 10 (2022): 2036-2058.
[2] S.M. Nosratabadi, M. Jahandide, and J.M. Guerrero. "Robust scenario-based concept for stochastic energy management of an energy hub contains intelligent parking lot considering convexity principle of CHP nonlinear model with triple operational zones." Sustainable Cities and Society 68 (2021): 102795.
[3] Y. Wen, C. Guo, D.S. Kirschen, and S. Dong. "Enhanced security-constrained OPF with distributed battery energy storage." IEEE Transactions on Power Systems 30, no. 1 (2014): 98-108.
[4] C. Wang, X. Li, Y. Zhang, Y. Dong, X. Dong, and M. Wang. "Two-stage unit commitment considering multiple correlations of wind power forecast errors." IET Renewable Power Generation 15, no. 3 (2021): 574-585.
[5] A. Nasri, S.J. Kazempour, A.J. Conejo, and M. Ghandhari. "Network-constrained AC unit commitment under uncertainty: A Benders’ decomposition approach." IEEE Transactions on Power Systems 31, no. 1 (2015): 412-422.
[6] P. Li, L. Song, J. Qu, Y. Huang, X. Wu, X. Lu, and S. Xia. "A two-stage distributionally robust optimization model for wind farms and storage units jointly operated power systems." IEEE Access 9 (2021): 111132-111142.
[7] A. Kargarian, and G. Hug. "Optimal sizing of energy storage systems: A combination of hourly and intra‐hour time perspectives." IET Generation, Transmission & Distribution 10, no. 3 (2016): 594-600.
[8] X. Dui, G. Zhu, and L. Yao. "Two-stage optimization of battery energy storage capacity to decrease wind power curtailment in grid-connected wind farms." IEEE Transactions on Power Systems 33, no. 3 (2017): 3296-3305.
[9] A. Kou, and X. Li. "Neural network intelligent control based on MPSO." IEEE Access 11 (2023): 58565 - 58577.
[10] H. Ma, Y. Zhang, S. Sun, T. Liu, and Y. Shan. "A comprehensive survey on NSGA-II for multi-objective optimization and applications." Artificial Intelligence Review 56 (2023): 15217–15270.
[11] M. Geidl, and G. Andersson. "Optimal power flow of multiple energy carriers." IEEE Transactions on Power Systems 22, no. 1 (2007): 145-155.
[12] A. Hajimiragha, C. Canizares, M. Fowler, M. Geidl, and G. Andersson. "Optimal energy flow of integrated energy systems with hydrogen economy considerations." 2007 iREP Symposium - Bulk Power System Dynamics and Control - VII. Revitalizing Operational Reliability (2007): 1-11.
[13] A. Shabanpour-Haghighi, and A.R. Seifi. "Simultaneous integrated optimal energy flow of electricity, gas, and heat." Energy Conversion and Management 101 (2015): 579-591.
[14] R. Hemmati, H. Mehrjerdi, and S.M. Nosratabadi. "Resilience-oriented adaptable microgrid formation in integrated electricity-gas system with deployment of multiple energy hubs." Sustainable Cities and Society 71 (2021): 102946.
[15] F. Kamyab, and S. Bahrami. "Efficient operation of energy hubs in time-of-use and dynamic pricing electricity markets." Energy 106 (2016): 343-355.
[16] I.G. Moghaddam, M. Saniei, and E. Mashhour. "A comprehensive model for self-scheduling an energy hub to supply cooling, heating and electrical demands of a building." Energy 94 (2016): 157-170.
[17] S.M. Nosratabadi, M. Jahandide, and R.K. Nejad. "Simultaneous planning of energy carriers by employing efficient storages within main and auxiliary energy hubs via a comprehensive MILP modeling in distribution network." Journal of Energy Storage 30 (2020): 101585.
[18] M. Nasir, A.R. Jordehi, M. Tostado-Véliz, V.S. Tabar, S.A. Mansouri, and F. Jurado. "Operation of energy hubs with storage systems, solar, wind and biomass units connected to demand response aggregators." Sustainable Cities and Society 83 (2022): 103974.
[19] M. Nasir, A.R. Jordehi, S.A.A. Matin, V.S. Tabar, M. Tostado-Véliz, and S.A. Mansouri. "Optimal operation of energy hubs including parking lots for hydrogen vehicles and responsive demands." Journal of Energy Storage 50 (2022): 104630.
[20] S.M. Nosratabadi, R. Hemmati, and P.K. Gharaei. "Optimal planning of multi-energy microgrid with different energy storages and demand responsive loads utilizing a technical-economic-environmental programming." International Journal of Energy Research 45, no. 5 (2021): 6985-7017.
[21] S. Paudyal, C.A. Cañizares, and K. Bhattacharya. "Optimal operation of industrial energy hubs in smart grids." IEEE Transactions on Smart Grid 6, no. 2 (2015): 684-694.
[22] M. Rastegar, M. Fotuhi-Firuzabad, and M. Lehtonen. "Home load management in a residential energy hub." Electric Power Systems Research 119 (2015): 322-328.
[23] M. Geidl, and G. Andersson. "Optimal coupling of energy infrastructures." 2007 IEEE Lausanne Power Tech (2007): 1398-1403.
[24] G. Mavrotas, and K. Florios. "AUGMECON2: A novel version of the ε-constraint method for finding the exact Pareto set in multi-objective integer programming problems." Applied Mathematics and Computation 219, no. 18 (2013): 9652-9669.
[25] K. Saberi, H. Pashaei-Didani, R. Nourollahi, K. Zare, and S. Nojavan. "Optimal performance of CCHP-based microgrid considering environmental issues in the presence of real-time demand response." Sustainable Cities and Society 45 (2019): 596-606.
[26] H. Chamandoust, G. Derakhshan, S.M. Hakimi, and S. Bahramara. "Tri-objective scheduling of residential smart electrical distribution grids with optimal joint of responsive loads with renewable energy sources." Journal of Energy Storage 27 (2020): 101112.
[27] J. Kexin, Z. Quan, and Y. Manting. "Multi-attribute group decision making method under 2-dimension uncertain linguistic variables." Journal of Systems Engineering and Electronics 31, no. 6 (2020): 1254-1261.