گذردهی خطای مدار باز کلید نیمه هادی در اینورتر چندسطحی ضربدری با سلول پشتیبان با استفاده از روش کنترل پیش بین مبتنی بر مدل

نوع مقاله : مقاله برق

نویسندگان

دانشکده مهندسی برق و کامپیوتر، دانشگاه ارومیه، ارومیه، ایران

چکیده

روند رو به رشد استفاده از مبدل‌های چندسطحی در کاربردهای توان بالا، ضرورت توجه به قابلیت اطمینان و تحمل‌پذیری خطا در این مبدل‌ها را افزایش داده است. از این رو در این پژوهش، عملکرد اینورتر ضربدری که از روش کنترل پیش‌بین مبتنی بر مدل برای کلیدزنی بهره می‌برد، در شرایط وقوع خطای مدارباز در هر یک از کلیدهای نیمه‌های موجود در ساختار مبدل مورد بررسی قرار گرفته و رویکردی برای بهبود بهره‌برداری از ظرفیت آن در شرایط پس از خطا پیشنهاد شده است. به این منظور، ابتدا روشی برای تشخیص و جایابی خطای مدارباز با استفاده از انحراف ولتاژ انداز‌‌گیری ‌شده نسبت به ولتاژ مرجع پیشنهاد شده و سپس با تعریف شاخص‌های خطا بر اساس وضعیت سیگنال خطا در هنگام تولید سطوح ولتاژ مختلف در مدت زمان یک سیکل پس از تشخیص خطا، کلید معیوب شناسایی می‌شود. در این روش از حداقل تعداد سنسورهای ولتاژ و جریان استفاده می‌شود. سپس به منظور دستیابی به حداکثر ولتاژ خروجی در شرایط پس از خطا، پیشنهاد می‌شود یک سلول ضربدری با لینک خازنی به عنوان سلول پشتیبان در ساختار مبدل تعبیه شود. در نهایت، صحت و کارایی روش‌های پیشنهادی بر روی اینورتر نه-سطحی ضربدری از طریق شبیه‌سازی در محیط MATLAB/SIMULINK تایید شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Ride-Through of Semiconductor Switch Open-Circuit Failure in Cross Switched Multilevel Inverter with Back-Up Cell Using Model Predictive Control Method

نویسندگان [English]

  • Farzaneh Aslani-Gaznag
  • Yousef Neyshabouri
  • Mohammad Farhadi-Kangarlu
Faculty of Electrical and Computer Engineering, Urmia University, Urmia, Iran
چکیده [English]

The increasing trend in the use of multilevel converters for high-power applications has emphasized the significance of reliability and fault tolerance in these systems. In this research, Model Predictive Control (MPC) has been developed to generate the switching commands for the cross-switched inverter. The performance of the inverter is investigated under conditions where an open-circuit fault occurs in any of its switches. Additionally, an approach has been proposed to enhance the utilization of the capacity of the inverter in post-fault operation. For this purpose, first, a fault detection method is presented to identify the open-switch fault by measuring the deviation of measured voltage from the reference voltage. Then, by defining fault indices and monitoring their conditions during one cycle after fault detection, the faulty switch is also identified. This method uses the minimum number of voltage and current sensors. Also, to achieve the maximum possible output voltage under post-fault conditions, it is proposed to embed a cross-switched cell with capacitive links in the converter structure as an auxiliary cell. Finally, the accuracy and effectiveness of the proposed methods are verified through the simulation of a nine-level cross-switched inverter in the MATLAB/SIMULINK environment.

کلیدواژه‌ها [English]

  • Multilevel inverter
  • Open-Circuit fault
  • Fault detection
  • Fault tolerance
  • Cross-Switched converter
  • Model Predictive Control (MPC)
[1] S. Maghsoodi, Y. Kazemi-Sanji, M. Farhadi-Kangarlu, and S. Galvani. "Comprehensive Modeling of Induction Motor Imbalance Condition to Precise Assessment of Steady State Performance Based on Complex Current Unbalance Factor (CCUF)." Journal of Modeling in Engineering 19, no. 66 (2021): 65-78.
[2] M. Farhadi Kangarlu, E. Babaei, and M. Sabahi. "Cascaded cross‐switched multilevel inverter in symmetric and asymmetric conditions." IET Power Electronics 6, no. 6 (2013): 1041-1050.
[3] M. Vijeh, M. Rezanejad, E. Samadaei, and K. Bertilsson. "A General Review of Multilevel Inverters Based on Main Submodules: Structural Point of View." IEEE Transactions on Power Electronics 34, no. 10 (2019): 9479-9502.
[4] Y. Neyshabouri, and M. Farhadi-Kangarlu. "A Control Strategy for Cascaded H-Bridge Based STATCOM with Unequal Capacitive DC Links Based on Model Predictive Method." Journal of Modeling in Engineering 21, no. 73 (2023): 31-45.
[5] M. Farhadi Kangarlu, and E. Babaei. "Cross‐switched multilevel inverter: an innovative topology." IET Power Electronics 6, no. 4 (2013): 642-651.
[6] H. Shayeghi, A. Seifi, and M. Hosseinpour. "A Novel Multi-Level Cascade Inverter with Reduced Switching Devices to Connect Renewable Energy Sources to the Grid." Journal of Modeling in Engineering 21, no. 74 (2023): 95-111.
[7] N. Raj, T. Kale, A. Anand, and S. George. "Switch fault detection and diagnosis in space vector modulated cascaded H-bridge multilevel inverter." International Journal of Electronics 105, no. 12 (2018): 1977-1992.
[8] H. Lin, C. Lin, D. Xie, P. Acuna, and W. Liu. "A Counter-Based Open-Circuit Switch Fault Diagnostic Method for a Single-Phase Cascaded H-Bridge Multilevel Converter." IEEE Transactions on Power Electronics 39, no. 1 (2024): 814-825.
[9] G. Zhang, and J. Yu. "Open-circuit fault diagnosis for cascaded H-bridge multilevel inverter based on LS-PWM technique." CPSS Transactions on Power Electronics and Applications 6, no. 3 (2021): 201-208.
[10] T. Wang, H. Xu, J. Han, E. Elbouchikhi, and M.E.H. Benbouzid. "Cascaded H-Bridge Multilevel Inverter System Fault Diagnosis Using a PCA and Multiclass Relevance Vector Machine Approach." IEEE Transactions on Power Electronics 30, no. 12 (2015): 7006-7018.
[11] K. Thantirige, A.K. Rathore, S.K. Panda, S. Mukherjee, M.A. Zagrodnik, and A.K. Gupta. "An open-switch fault detection method for cascaded H-bridge multilevel inverter fed industrial drives." Presented at the IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, 2016.
[12] R. Abdelkader, B.D.E. Cherif, A. Bendiabdellah, and A. Kaddour. "An Open-Circuit Faults Diagnosis Approach for Three-Phase Inverters Based on an Improved Variational Mode Decomposition, Correlation Coefficients, and Statistical Indicators." IEEE Transactions on Instrumentation and Measurement 71 (2022): 1-9.
[13] H. Yan, Y. Peng, W. Shang, and D. Kong. "Open-circuit fault diagnosis in voltage source inverter for motor drive by using deep neural network." Engineering Applications of Artificial Intelligence 120 (April 1, 2023): 105866.
[14] Y. Pan, Z. Ni, A. Abuelnaga, M. Narimani, and J. Rodriguez. "Fault Diagnosis of Cascaded H-Bridge Inverter Using Model Predictive Control." Presented at the 2023 IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), 2023.
[15] G. Li, S. Xu, Z. Sun, C. Yao, G. Ren, and G. Ma. "Open-Circuit Fault Diagnosis for Three-Level ANPC Inverter Based on Predictive Current Vector Residual." IEEE Transactions on Industry Applications (2023): 1-14.
[16] N.B.Y. Gorla, S. Kolluri, M. Chai, and S.K. Panda. "An Open-Circuit Fault Detection and Localization Scheme for Cascaded H-Bridge Multilevel Converter Without Additional Sensors." IEEE Transactions on Industry Applications 58, no. 1 (2022): 457-467.
[17] P. Hekmati, I. Brown, and Z. Shen. "Open Circuit Switch Fault Detection in Flying Capacitor and Cascaded H-Bridge Multilevel Converters." IEEE Transactions on Power Electronics 36, no. 11 (2021): 12332-12341.
[18] Y. Neyshabouri, K.K. Monfared, H. Iman-Eini, and M. Farhadi-Kangarlu. "Symmetric Cascaded H-Bridge Multilevel Inverter With Enhanced Multi-Phase Fault Tolerant Capability." IEEE Transactions on Industrial Electronics 69, no. 9 (2022): 8739-8750.
[19] M. Fathi, and S.A. Khajehoddin. "A Fault Compensation Scheme for Cascaded H-Bridge Inverter With Reduced Common Mode Voltage." IEEE Transactions on Industrial Electronics 70, no. 4 (2023): 3257-3267.
[20] A. Panahi, Y. Neyshabouri, and M. Shamouei Dallaei Milan. "Improving the Tolerance of Power Semiconductor Switches Failure in an Active Rectifier Based on Cascaded H-bridge Multilevel Converter." Tabriz Journal of Electrical Engineering 53, no. 4 (2023): 257-268.
[21] M. Aleenejad, H. Mahmoudi, and R. Ahmadi. "Multifault Tolerance Strategy for Three-Phase Multilevel Converters Based on a Half-Wave Symmetrical Selective Harmonic Elimination Technique." IEEE Transactions on Power Electronics 32, no. 10 (2017): 7980-7989.
[22] A. Raki, Y. Neyshabouri, M. Aslanian, and H. Iman-Eini. "A Fault-Tolerant Strategy for Safe Operation of Cascaded H-Bridge Multilevel Inverter Under Faulty Condition." IEEE Transactions on Power Electronics 38, no. 6 (2023): 7285-7295.
[23] M. Aleenejad, S. Jafarishiadeh, H. Mahmoudi, and R. Ahmadi. "Reduced number of auxiliary H‐bridge power cells for post‐fault operation of three phase cascaded H‐bridge inverter." IET Power Electronics 12, no. 11 (2019): 2923-2931.
[24] H. Salimian, and H. Iman-Eini. "Fault-Tolerant Operation of Three-Phase Cascaded H-Bridge Converters Using an Auxiliary Module." IEEE Transactions on Industrial Electronics 64, no. 2 (2017): 1018-1027.
[25] H. Mhiesan, Y. Wei, Y.P. Siwakoti, and H.A. Mantooth. "A Fault-Tolerant Hybrid Cascaded H-Bridge Multilevel Inverter." IEEE Transactions on Power Electronics 35, no. 12 (2020): 12702-12715.