بررسی عددی جریان القا شده توسط یک شیر دروازه‌ای در رژیم جریان اسلاگ

نوع مقاله : مقاله مکانیک

نویسندگان

دانشکده مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی، تهران، ایران

چکیده

در بیشتر کاربردهای صنعتی به دلیل خاصیت نامنظمی و نوسانات فشار بالا در رژیم جریان اسلاگ، سعی بر آن است که از تشکیل آن جلوگیری شود. هدف از این تحقیق، بررسی گرادیان فشار، کسر حجمی مایع اسلاگ، فرکانس اسلاگ و طول اسلاگ با استفاده از شبیه‌سازی عددی برای جریان اسلاگ با وجود شیر دروازه‌ای در لوله افقی می‌باشد. برای دستیابی به این هدف، شبیه‌سازی عددی برای رژیم جریان اسلاگ در یک لوله افقی به طول 10 متر و قطر 20 میلی‌متر با سه نسبت بازشدگی سطح مقطع مجزا انجام شد. ابتدا نتایج عددی (فرکانس اسلاگ) در مقایسه با سایر مطالعات عددی اعتبارسنجی شد و توافق منطقی با خطای کمتر از 3 درصد به‌دست آمد. دوم، نتایج عددی در مقایسه با داده‌های تجربی از نظر زمان و مکان برای حالتی که جریان اسلاگ در مواجهه با شیر دروازه‌ای قرار دارد، تأیید شد و خطای کمتر از 15٪ به‌دست آمد. در نهایت، گرادیان فشار، فرکانس اسلاگ، طول اسلاگ و کسر حجمی مایع با وجود شیر دروازه‌ای با استفاده از روش عددی مورد بررسی قرار گرفت. نتایج بیانگر این بود که فرکانس اسلاگ به میزان 3/4 درصد افزایش می‌یابد و این پدیده به دلیل موج‌های کوچکی است که به دلیل افت فشار زیاد در محل شیر به وجود می‌آیند. طول اسلاگ مایع با کاهش بازشدگی دهانه شیر دروازه‌ای به میزان 89/20 افزایش و با افزایش سرعت سطحی گاز به میزان 4/30 درصد کاهش می‌یابد. با افزایش فاصله از شیر دروازه‌ای افت فشار به میزان 65/15 درصد کاهش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Investigation of Flow Induced by a Gate Valve in the Slug Regime

نویسندگان [English]

  • Samira Mohammadi
  • Ali Jahangiri
  • Mohammad Emamzadeh
  • Sahand Majidi
Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran
چکیده [English]

Slug flow is a part of an intermittent flow that is avoided in industrial applications because of its irregularity and high-pressure fluctuations. The present investigation aims to comprehend the behavior of intermittent slug flow with the gate valve and its associated pressure drop, slug liquid holdup, slug frequency, and averaged slug body length using CFD simulation studies. To achieve this objective, numerical investigations of slug flow were carried out on a horizontal pipe 10 m in length and 20 mm in diameter with three distinct area contraction ratios. First, the numerical results (slug frequency) were validated by comparison with other studies, and a reasonable agreement with an error of less than 3% was achieved. Second, the numerical results were validated by comparison with experimental data in terms of time and space for slug flow encountering the gate valve, and a sensible agreement with an error of less than 15% was achieved. Eventually, pressure gradient, slug frequency, slug length, and the existence of a gate valve have been investigated using numerical methods. The results showed that the slug frequency increases by 4.3% and this phenomenon is due to the small waves that occur due to the high pressure drop at the valve location. The length of the liquid slug increases by 20.89 percent by reducing the opening of the gate valve and decreases by 30.4 percent by increasing the surface velocity of the gas. By increasing the distance from the gate valve, the pressure drops decrease by 15.65%.

کلیدواژه‌ها [English]

  • Numerical simulation
  • Slug frequency
  • Pressure drop
  • Horizontal pipe
  • Gate valve
  • Two-Phase flow
[1] V. Pugliese, A. Ettehadtavakkol, and E. Panacharoensawad. "Drift Flux Model Parameters Estimation Based on Numerical Simulation of Slug Flow Regime with High-Viscous Liquids in Pipelines." International Journal of Multiphase Flow no.135 (2021): 103527.
[2] S. Anupriya, and S. Jayanti. "Study of Gas-Liquid Upward Annular Flow through a Contraction." Annals of Nuclear Energy no.129 (2019): 169–80.
[3] Z. Lin, X. Sun, T. Yu, Y. Zhang, Y. Li, and Z. Zhu. "Gas–Solid Two-Phase Flow and Erosion Calculation of Gate Valve Based on the CFD-DEM Model." Powder Technology, no. 366 (2020): 395–407.
[4] S. Kumar Panda, K. Charan Rath, and B. Kumar Choudhury. "Determining the Flow Correlation for an Orifice with a Non-Dimensional Number." Flow Measurement and Instrumentation, no. 90 (2023): 102338.
[5] E. Janssen. "Two-phase pressure loss across abrupt contraction and expansions, steam-water at 600 to 1400 PSIA." Proceedings of the 3rd International Heat Transfer Conference, Chicago, no. 5 (1966): 13–23.
[6] T. Zhao, J. ZhangL. Ma. "A general structural design methodology for multi-hole orifices and its experimental application." Journal of Mechanical Science and Technology 25 (2011): 2237–2246.
[7] S. Kumar Panda, K. Charan Rath, and B. Kumar Choudhury. "A Two Phase Analysis of Orifice Based on a Non-Dimensional Number." Flow Measurement and Instrumentation, no. 94 (2023): 102470.
[8] M.A. Pasquini, and E.S. Rosa. "Orifice Plate Modeling with Two-Phase Multiplier Including the Effect of the Area Contraction Ratio." International Journal of Multiphase Flow 157 (2022): 104095
[9] A. Maurya, and R.P. Chhabra. "Flow and Thermal Characteristics of Power-Law Fluids through a Rectangular-Shaped Orifice: Effects of Aspect Ratio and Orifice Location." International Communications in Heat and Mass Transfer 152 (2024): 107303.
[10] A. Arabi, Y. Salhi, Y. Zenati, E.K. Si-Ahmed, and J. Legrand. "Experimental Investigation of Sudden Expansion’s Influence on the Hydrodynamic Behavior of Different Sub-Regimes of Intermittent Flow." Journal of Petroleum Science and Engineering 205 (2021): 108834.
[11] A. Zeghloul, A. Azzi, N. Ghendour, and A.S. Berrouk. "A Differential Pressure Technique for Void Fraction Measurement in Gas-Liquid Flow." ENP Engineering Science Journal no. 2 (2021): 69–75.
[12] N. Almalki, and W.H. Ahmed. "Experimental Investigation of Two-Phase Flow Development through Two-Stage Orifices." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 238 (2024).
[13] R.E. Vieira, T.A. Sedrez, S.A. Shirazi, and G. Silva. "Multiphase Flow in Circular and Triangular Pipes: Examining Flow Characteristics, Sand Erosion and Heat Transfer Via CFD and experimental work." International Petroleum Exhibition & Conference, Abu Dhabi, UAE no. 79 (2021): 101894.
[16] A. Zeghloul, H. Bouyahiaoui, A. Azzi, A.H. Hasan, and A. Al-Sarkhi. "Experimental Investigation of the Vertical Upward Single- And Two-Phase Flow Pressure Drops through Gate and Ball Valves." Journal of Fluids Engineering, Transactions of the ASME 142 no. 2 (2020).
[17] N. Li, and B. Chen. "Investigation on Gas-Liquid Two-Phase Frictional Pressure Drop in Pipeline Riser." Geoenergy Science and Engineering 234 (2024): 212627.
[18] S.G. Holagh, and W.H. Ahmed. "Critical Review of Vertical Gas-Liquid Slug Flow: An Insight to Better Understand Flow Hydrodynamics’ Effect on Heat and Mass Transfer Characteristics." International Journal of Heat and Mass Transfer 225 (2024): 125422.
[19] X. Wu, Z. Wang, L. Dong, Y. Xin, and H. Cao. "Experimental Study on the Slugging Characteristics of Gas–Liquid Slug Flow in Horizontal Pipes." ACS Omega 7, no. 25 (2022): 21643–53.
[20] D.Y. Park, and J. Liang. "Effects of Fatigue Parameters on Fatigue Crack Growth Rate of Pipe Steels and Girth Weld." Journal of Pressure Vessel Technology 146, no. 3 (2024).
[21] P. Tan, M. Zhou, C. Tang, and K. Zhou. "A Powder-Scale Multiphysics Framework for Powder Bed Fusion of Fiber-Reinforced Polymer Composites." Advanced Powder Materials no. 4 (2024): 100190.
[22] D. Apte, M. Ge, and O. Coutier-Delgosha. "Numerical Investigation of a Cavitating Nozzle for Jetting and Rock Erosion Based on Different Turbulence Models." Geoenergy Science and Engineering 231 (2023): 212300.
[23] H. Zhang, L. Zhao, and W. Wang. "Finite Element Implementation of a Seepage-Stress Coupling Method for Solid-Liquid-Gas Three Phases in Porous Media Considering Compressible Gas." Computers and Geotechnics 169 (2024): 106189.
[24] Y. Guo, M. Bao, L. Gong, S. Shen, and K. Zhang. "Numerical Investigation of the Falling Film Thickness and Heat Transfer Characteristics over Horizontal Round Tube." International Journal of Multiphase Flow 149 (2022): 103977.
[25] S. Gross, and A. Reusken. "Numerical Simulation of Continuum Models for Fluid-Fluid Interface Dynamics." The European Physical Journal Special Topics no. 1 (2013): 211–39.
[26] A. Orell. "Experimental Validation of a Simple Model for Gas–Liquid Slug Flow in Horizontal Pipes." Chemical Engineering Science, no. 5 (2005): 1371–81.
[27] M. Rezavand, and X. Hu. "Numerical Simulation of Two-Phase Slug Flows in Horizontal Pipelines: A 3-D Smoothed Particle Hydrodynamics Application." European Journal of Mechanics - B/Fluids 104 (2024): 56–67.
[28] S. Schmelter, M. Olbrich, E. Schmeyer, and M. Bär. "Numerical Simulation, Validation, and Analysis of Two-Phase Slug Flow in Large Horizontal Pipes." Flow Measurement and Instrumentation 73 (2020): 101722.
[29] L.F.A. Alegría, L.E. Ortiz-Vidal, C.E. Álvarez-Pacheco, J.E.C. Bolivar, and O. M.H. Rodriguez. "Influence of a Restriction on Flow Patterns, Void Fraction, and Pressure Drop in Gas–Liquid Pipe Flow." Experimental Thermal and Fluid Science 155 (2024): 111180.
[30] Y. Cao, Q. Xu, T. Liu, H. Yu, B. Huang, and L. Guo. "Experimental Investigation on Long Hydrodynamic Slugs in Offshore Pipeline." Ocean Engineering 289 (2023): 116136.
[31] H.C. Shin, S.H. Kim, Y. Shah, and S.M. Kim. "An Experimental Study on Air-Oil Flow Patterns in Horizontal Pipes Using Two Synthetic Oils." International Journal of Heat and Mass Transfer 226 (2024): 125459.
[32] A. Kabiri-Samani, N. Jafarinasab, and Z. Sheikh Khozani. "Relationship between Two-Phase Flow in Bottom Outlet and Air-Core Vortices at Intake." Proceedings of the Institution of Civil Engineers - Water Management no. 2 (2024): 97–111.
[33] A. Arabi, Y. Salhi, Y. Zenati, E.K. Si-Ahmed, and J. Legrand. "Experimental Investigation of Sudden Expansion’s Influence on the Hydrodynamic Behavior of Different Sub-Regimes of Intermittent Flow." Journal of Petroleum Science and Engineering 205 (2021): 108834.