[1] H. Mohseni. "Fundaments of High Voltage Engineering." Tehran University Press, 6th Edition, 2015. (in Persian)
[2] "Technical and general executive specifications of substations, overhead distribution lines and transmission of arresters in high voltage substations." Ministry of Energy -Tavanir Company, publication number 501-2. 2010. (in Persian).
[3] S. Luo, L. Luan, Y. Cui, Sh. Xu, Q. Guo, and T. Liu. "Simulation research on lightning protection effect of distribution line lightning protection measures." Journal of Physics: Conf. Series 1802, no. 4 (2021).
[4] Streamer International AG. "Line Lightning Protection Devices for Medium-Voltage Networks", LP_CATA_2212_EN_WEB, 2022.
[5] E. Perdana, S. Hidayat, and R. Zoro. "Lightning protection system on overhead distribution line using multi chamber arrester." in Proc. 2nd IEEE Conf. on Power Engineering and Renewable Energy, ICPERE’14, Bali, Indonesia. pp. 70-74. IEEE, 2014.
[6] G.V. Podporkin, V.E. Pilshikov, E.S. Kalakutsky, and A.D. Sivaev. "Overhead lines lightning protection by multi-chamber arresters and insulator-arresters." IEEE Transaction on Power Delivery 26, no. 1 (2010): 214-221.
[7] M. Borecki and Y. Kharchenko. "Comparative Simulation Analysis of Selected Medium and High Voltage Surge Protection Devices." Energies 15, no. 12 (2022): 4326.
[8] M. Borecki and M. Ciuba. "Testing of Selected Surge Protection Devices in the Context of the Possibility of Ensuring the Reliability of Power Grids." Energies 16, no. 3 (2023):1445.
[9] Multi-Chamber Lightning Arrester. "Test report From High Voltage Lab of NRI." Report Number: TH 90026E, 2011.
[10] N.W. Priambodo, B.B.S.D.A. Harsono, A.S. Habibie, and J. Hartono. "Performance evaluation of modified multi gap arrester." In IOP Conference Series: Materials Science and Engineering, vol. 1098, no. 4, p. 042054. IOP Publishing, 2021.
[11] V.Y. Frolov, D.Y. Ivanov, G.V. Podporkin, and A.D. Sivaev. "Development of a mathematical model of processes in multi-chamber arrester for identification of criteria of arc extinction." International Symposium on Lightning Protection (XIV SIPDA). Natal, Brazil. pp. 240-243. IEEE, 2017.
[12] V.Y. Frolov, D.Y. Ivanov, Y.V. Murashov, and A.D. Sivaev. "Calculation of The Composition of Plasma of an Arc Pulsed Discharge in a multi chamber arrester." Technical Physics Letter 41, no. 4 (2015): 310-313.
[13] W. Sima, W. Jia, T. Yuan, M. Yang, H. Cheng, and S. Zua. "Dynamic Evolution of Arc Plasma in a Semi-Enclosed Arc-Extinguishing Chamber and its Influencing Factor." Physics of Plasmas 28, no. 6 (2021): 1-14.
[14] Y. Wu, M. Rong, X. Li, A.B. Murphy, X. Wang, F. Yang, and Z. Sun. "Numerical Analysis of the Effect of the Chamber Width and Outlet Area on the Motion of an Air Arc Plasma." IEEE Transaction on Plasma Science 36, no. 5 (2008): 2831-2837.
[15] D. Wu, Z. Ji, and J. Wang. "Simulation and Experimental Analysis of Multi-Chamber Arc-Quenching Arresters (MCAA) for 10 kV Transmission Lines." Energies 14, no. 19 (2021) :6185.
[16] Y. Liu, G. Wu, K. Liu, Y. Guo, X. Zhang, and Ch. Shi. " Study on the Arc Motion Characteristics of Multi-Chamber Arrester Based on 3D Model." In IEEE Access, vol. 8, (2020): 90035-90041.
[17] K. Silakhori, M. Mirzaie, and I. Ahmadi. "Electro-thermal analysis and dynamic arc parameters evaluation in multi chamber arrester under structural and dimensional changes effect using the finite element method." Electric Power System Research 229, 110185, (2024).
[18] G.V. Podporkin, E.Y. Enkin,
Y.V. Kretov,
V.N. Pankratiev, and
V.E. Pilschikov. "Prototype of multi-chamber loop-type arrester for 110 kV OHL lightning protection." 34th International Conference on Lightning Protection (ICLP). Rzeszow, Poland. pp. 1-5. IEEE, 2018.
[19] G.V. Podporkin, E.Y Enkin,
B.O. Dmitriy, and
V.E. Pilschikov. "Multi-Chamber Disc-Type Lightning Arrester for 13.8 kV Overhead Lines Protection."
11th Asia-Pacific International Conference on Lightning (APL). Hong Kong, China. PP. 1-5. IEEE, 2019.
[20] L. Murashov, V.Y. Frolov, D. Uhrlandt,
S. Gorchakov, D. Ivanov, and A.D. Sivaev. "Analysis of Arc Processes in Multi-chamber Arrester for Lightning Protection at High-Voltage Overhead Power Lines."
Plasma Physics and Technology 4, no. 2 (2017): 124-128.
[21] Sh. Pu, W. Jia, H. Li, Q. Peng, R. Yang, and T. Yuan. "Research on Compact Design of Multi-chamber Arc-extinguishing Structure for Lightning Protection." IEEE International Conference on High Voltage Engineering and Application (ICHVE). Beijing, China. pp. 1-4. IEEE, 2020.
[22] G.V. Podporkin, E.Y. Enkin, B.O. Dmitriy, and V.E. Pilschikov. "Multi-Chamber Disc-Type Lightning Arrester for 13.8 kV Overhead Lines Protection." 11th Asia-Pacific International Conference on Lightning (APL), Hong Kong, China. pp. 1-5. IEEE, 2019.
[23] Y. Song, J. Wang, P. Huang, Y. Lu, Q. He, Zh. Jia, H. Li, and Y. Wang. "Arc-Extinguishing Research on Semi-Closed Multi-Compression Tube Structures." Energies 16, no. 3 (2023).
[24] G.V. Podporkin, E.Y. Enkin, E.S. Kalakutsky, V.E. Pilshikov, and A.D. Sivaev. "Lightning protection of overhead lines rated at 3–35 kV and above with the help of multi-chamber arresters and insulator-arresters." Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC). Beijing, China. pp. 1247-1250. IEEE, 2010.
[25] Engineering Toolbox [online]. 2001. https://www.engineeringtoolbox.com.
[26] F. Heidler, J. Cvetic, and B.V. Stanic. "Calculation of Lightning Current Parameters." IEEE Transaction on Power Delivery 14, no. 2 (1999): 399-404.
[27] D. Wu, and J Wang. " Lightning Protection of 10-kV Distribution Lines by Multiple Breakpoints Arc-Extinguishing Lightning Protection Gap." IEEE Transaction on Plasma Science 48, no. 2 (2020): 531-536.