مدیریت انرژی هاب‌های انرژی تجدیدپذیر دارای ذخیره‌ساز و خودروهای الکتریکی در شبکه‌های الکتریکی و حرارتی مبنی بر اهداف اقتصادی و بهره‌برداری

نوع مقاله : مقاله پژوهشی

نویسنده

گروه مهندسی برق، دانشگاه ملی مهارت، تهران، ایران

چکیده

این مقاله به زمان‌بندی بهینه توان هاب‌های انرژی تجدیدپذیر برپایه ذخیره‌سازهای ساکن و خودروهای الکتریکی در شبکه‌های الکتریکی و حرارتی متناسب با اهداف اقتصادی و بهره‌برداری بهینه بهره‌بردار شبکه‌ها می‌پردازد. برای برآورد این اهداف، کمینه‌سازی هزینه بهره‌برداری و تلفات انرژی شبکه‌ها در قالب بهینه‌سازی پارتو مبنی بر روش مجموع توابع وزندار به عنوان تابع هدف استفاده می‌شود. این طرح شامل قیود پخش توان بهینه خطی‌سازی شده شبکه‌ها و مدل بهر‌ه‌برداری هاب‌ها است. هاب‌ها شامل قیود منابع تجدیدپذیر از قبیل توربین‌ بادی، فتوولتائیک‌ و واحدهای زیست توده، ذخیره‌سازهای ساکن مانند ذخیره‌ساز هیدروژنی و حرارتی، و خودروهای الکتریکی است. سیستم زیست توده همزمان در تولید انرژی الکتریکی و حرارتی نقش دارد. بار، توان تجدیدپذیر، قیمت انرژی و پارامترهای خودروهای الکتریکی به‌صورت عدم قطعیت هستند. در این مقاله از بهینه‌سازی تصادفی برای مدل‌سازی عدم قطعیت‌های یاد شده استفاده می‌شود. در نهایت نتایج عددی بیانگر قابلیت طرح پیشنهادی در ارتقاء وضعیت اقتصادی و بهره‌برداری شبکه‌های انرژی با استفاده از مدیریت انرژی مناسب هاب‌های مذکور است. به‌طوری که زمان-بندی بهینه توان ذخیره‌سازهای ساکن و خودروهای الکتریکی در هاب‌های تجدیدپذیر منجر به ارتقاء 29%-56% وضعیت بهره‌برداری و 5/35% وضعیت اقتصادی شبکه‌های انرژی نسبت به مطالعات پخش بار می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Energy Management of Renewable Energy Hubs including Storages and Electric Vehicles in the Electrical and Thermal Networks Based on Economic and Operation Objectives

نویسنده [English]

  • Syed Hossain Moayed
Department of Electrical Engineering, National University of Skills (NUS), Tehran, Iran
چکیده [English]

This article deals to the optimal power scheduling of renewable energy hubs based on storages and electric vehicles in electrical and thermal networks according to the optimal economic and operation goals of the networks operator. To estimate these goals, the minimization of the operating cost and energy losses of networks in the form of Pareto optimization based on the method of the sum of weighted functions is considered as the objective function. This scheme includes the constraints of linearized optimal power flow of networks and the operation model of hubs. Hubs include the limitations of renewable resources such as wind turbine, photovoltaic and bio-waste units, stationary storage such as hydrogen and thermal storage, and electric vehicles. The bio-waste system simultaneously plays a role in the production of electrical and thermal energy. Load, renewable power, energy price and parameters of electric vehicles are uncertainty. In this article, stochastic optimization is used to model the aforementioned uncertainties. Finally, the numerical results show the capability of the proposed scheme in improving the economic and operation status of energy networks by using appropriate energy management of the mentioned hubs. So that the optimal power scheduling of the storage devices and electric vehicles in the renewable hubs leads to the improvement of 29%-56% of the operational status and 35.5% of the economic status of energy networks compared to the load flow studies.

کلیدواژه‌ها [English]

  • Energy hub
  • Renewable sources
  • Stationary storage
  • Electric vehicle
  • Energy management
  • Stochastic optimization
  1. O. Kohansal, M. Zadehbagheri, M.J. Kiani, and S. Nejatian. “Two-Objective Participation of Energy Hubs and Distribution Networks in the Wholesale and Retail Energy Markets Based on Fuzzy Decision.” Journal of Intelligent Procedures in Electrical Technology 15, no. 58 (2023): 67-84. (in Persian)
  2. F. Niazvand, S. Kharrati, F. Khosravi, and A. Rastgou. “Dual-Objectives Energy and Load Management for an Energy Hub by Considering Diverse Plannings and in the Presence of CCUS Technology and the TOU Program.” Journal of Intelligent Procedures in Electrical Technology 14, no. 54 (2023): 31-58. (in Persian)
  3. F. Khalafian, and et al. “Capabilities of compressed air energy storage in the economic design of renewable off-grid system to supply electricity and heat costumers and smart charging-based electric vehicles.” Journal of Energy Storage 78 (2024): 109888.
  4. H. Liang, and S. Pirouzi. “Energy management system based on economic Flexi-reliable operation for the smart distribution network including integrated energy system of hydrogen storage and renewable sources.” Energy 12 (2024): 130745.
  5. G.S. Thirunavukkarasu, M. Seyedmahmoudian, E. Jamei, B. Horan, S. Mekhilef, and A. Stojcevski. “Role of optimization techniques in microgrid energy management systems-A review.” Energy Strategy Reviews 43 (2022): 100899.
  6. M.R. AkbaiZadeh, T. Niknam, and A. Kavousi-Fard. “Adaptive robust optimization for the energy management of the grid-connected energy hubs based on hybrid meta-heuristic algorithm.” Energy 235 (2021): 121171.
  7. H.R. Zafarani, S.A. Taher, and M. Shahidehpour. “Robust operation of a multicarrier energy system considering EVs and CHP units.” Energy 192 (2020): 116703.
  8. A. Dini, A.R. Hassankashi, S. Pirouzi, M. Lehtonen, B. Arandian, and A.A. Baziar. “A flexible-reliable operation optimization model of the networked energy hubs with distributed generations, energy storage systems and demand response.” Energy 239 (2022): 121923.
  9. R. Bahmani, H. Karimi, and S. Jadid. “Cooperative energy management of multi-energy hub systems considering demand response programs and ice storage.” International Journal of Electrical Power & Energy Systems 130 (2021): 106904.
  10. M. Jalili, M. Sedighizadeh, and A.R. Sheikhi Fini. “Stochastic optimal operation of a microgrid based on energy hub including a solar-powered compressed air energy storage system and an ice storage conditioner.” Journal of Energy Storage 33 (2021): 102089.
  11. A. Dini, S. Pirouzi, M.A. Norouzi, and M. Lehtonen. “Grid-connected energy hubs in the coordinated multi-energy management based on day-ahead market framework.” Energy 188 (2019): 116055.
  12. A.R. Tavakoli, A. Karimi, M.R. Shafie-khah. “Optimal probabilistic operation of energy hub with various energy converters and electrical storage based on electricity, heat, natural gas, and biomass by proposing innovative uncertainty modeling methods.” Journal of Energy Storage 51 (2022): 104344.
  13. H. Qi, H. Yue, J. Zhang, and K.L. Lo. “Optimisation of a smart energy hub with integration of combined heat and power, demand side response and energy storage.” Energy 234 (2021): 121268.
  14. E. Akbari, S.F. Mousavi Shabestari, S. Pirouzi, and M. Jadidoleslam. “Network flexibility regulation by renewable energy hubs using flexibility pricing-based energy management.” Renewable Energy 206 (2023): 295-308.
  15. X.W. Zhang, X. Yu, X. Ye, and S. Pirouzi. “Economic energy managementof networked flexi-renewable energy hubs according to uncertainty modeling by the unscented transformation method.” Energy 278 (2023): 128054.
  16. W. Jakob, and C. Blume. “Pareto optimization or cascaded weighted sum: A comparison of concepts.” Algorithms 7 (2014): 166–185.
  17. R. Homayoun, B. Bahmani‐Firouzi, and T. Niknam. “Multi‐objective operation of distributed generations and thermal blocks in microgrids based on energy management system.” IET Generation, Transmission & Distribution 15, no. 9 (2021):1451-1462.
  18. M.R. Jokar, S. Shahmoradi, A.H. Mohammed, L.K. Foong, B.N. Le, and S. Pirouzi. “Stationary and mobile storages-based renewable off-grid system planning considering storage degradation cost based on information-gap decision theory optimization.” Journal of Energy Storage 58 (2023): 106389.
  19. J. Aghaei, M. Barani, M. Shafie-khah, A.A. Sánchez de la Nieta, J.P.S. Catalão. “Risk-Constrained Offering Strategy for Aggregated Hybrid Power Plant Including Wind Power Producer and Demand Response Provider.” IEEE Transactions on Sustainable Energy 7, no. 2 (2016): 513-525.
  20. P.R. Babu, C.P. Rakesh, M.N. Kumar, G. Srikanth, and D.P. Reddy. “A Novel Approach for Solving Distribution Networks.” 2009 Annual IEEE India Conference, Ahmedabad, India (2009): 1-5.
  21. S. Parhoudeh, P. Eguía López, A. Kavousi Fard. “Stochastic Coordinated Management of Electrical–Gas–Thermal Networks in Flexible Energy Hubs Considering Day-Ahead Energy and Ancillary Markets.” Sustainability 15, no. 13 (2023): 10744.
  22. Generalized Algebraic Modeling Systems (GAMS). [Online]. Available: http://www.gams.com.
دوره 23، شماره ویژه 81
جشن پنجاهمین سالگرد تاسیس دانشگاه سمنان- در حال تکمیل شدن
تیر 1404
صفحه 157-173
  • تاریخ دریافت: 05 دی 1402
  • تاریخ بازنگری: 15 تیر 1403
  • تاریخ پذیرش: 17 مهر 1403