بررسی آزمایشگاهی رفتار رئولوژیکی و تریبولوژیکی روغن موتور حاوی نانوذرات سیلیکاآیروژل

نوع مقاله : مقاله مکانیک

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه سمنان، سمنان، ایران

2 دانشکده مهندسی، دانشگاه دامغان، دامغان، ایران

چکیده

این مقاله به بررسی آزمایشگاهی رفتار رئولوژیکی و تریبولوژیکی نانوروغن حاوی نانوذرات سیلیکا‌آیروژل در غلظت‌ها و دماهای مختلف و مدلسازی رفتار رئولوژی این نانو روغن می پردازد. نانوذرات در روغن پایه SAE20W50، در غلظت‌های 0/28، 1/4، 2/8 و 5/5 درصد وزنی تعلیق شد و در دماهای مختلف مورد آزمایش قرار گرفت. ضریب اصطکاک و سایش با استفاده از دستگاه تست پین روی دیسک و بر اساس استاندارد ASTM G99 انجام شد و ویسکوزیته دینامیکی با دستگاه ویسکومتر بروکفیلد مدل کپ 2000 اندازه گیری شد. پس از بررسی خواص رئولوژیکی نانوسیال، شاخص توانی نشان دهنده رفتار غیرنیوتنی برای سیال از نوع رقیق برشی بود. نتایج اندازه گیری های سایش نمایانگر آن بود که نانوسیال با غلظت 5/5 درصد وزنی در دمای 25 درجه سانتی‌گراد اصطکاک را به میزان 22/39 درصد و غلظت 2/8 درصد وزنی در همین دما به میزان 19/40 درصد نسبت به روغن پایه کاهش دادند. نرخ سایش نیز به ترتیب برای غلظت 5/5 و 2/8 درصد وزنی، 61/1 درصد و 50 درصد نسبت به روغن خالص کاهش پیدا کرد. با انتخاب غلظت 2/8 درصد وزنی به عنوان غلظت بهینه، برای نخستین بار آزمایشات در محدوده دما بالا که شامل دماهای 100 و 200 درجه سانتی‌گراد ادامه انجام گردید. در دمای 100 درجه سانتی‌گراد ضریب اصطکاک توسط نانوسیال با غلظت بهینه (2/8 درصد وزنی) تا 25/80 درصد و سایش نیز تا 51/36 درصد نسبت به روغن پایه کاهش یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

EExperimental Investigation of Rheological and Tribological Behavior of Engine Oil Containing Silica Aerogel Nanoparticles

نویسندگان [English]

  • Ramin Adhami 1
  • Seyfolah Saedodin 1
  • Seyed Hadi Rostamian 2
1 Faculty of Mechanical Engineering, Semnan University, Semnan, Iran
2 School of Engineering, Damghan University, Damghan, Iran
چکیده [English]

This paper investigates the rheological and tribological behavior of motor oil containing silica-aerogel nanoparticles at different concentrations and temperatures. The nanoparticles were suspended in SAE20W50 base oil at concentrations of 0.28, 1.4, 2.8, and 5.5wt% and tested at different temperatures. The friction and wear tests were carried out by a pin on disk device according to ASTM G99 standard. The dynamic viscosity measured by the Brookfield CAP 2000+ viscometer. The power-law index obtained for all concentrations showed that the fluid has non-Newtonian shear thinning behavior. The results of the wear measurements showed that the nanofluid with a concentration of 5.5wt% at 25 ‌°C decreased the friction coefficient by 22.39%. At the same temperature the friction coefficient, 19.40 % reduced by the concentration of 2.8 wt% respect to the base oil. At this temperature, the wear rate also decreased for concentrations of 5.5wt% and 2.8wt%, 61.1%, and 50%, respectively. By selecting the concentration of 2.8wt% as the optimal concentration, the experiments were resumed at temperatures of 100 and 200 °C with this concentration. The results showed that at 100 °C and with optimum concentration, the friction coefficient decreased by 25.80%, and the wear rate by 51.36% compared to the base oil.

کلیدواژه‌ها [English]

  • Rheological proerties
  • Tribological behavior
  • Engine oil
  • Nanofluid
  • Silica aerogel
  • Wear rate
[1] Holmberg, Kenneth, and Ali Erdemir. "Influence of Tribology on Global Energy Consumption, Costs and Emissions." Friction 5, no. 3 (2017): 263–84.
[2] Moayyedi, Mohammad Kazem. "Numerical Assessment and Data-Driven Reduced Order Model for Natural Convection of Water-Copper Nanofluid in Porous Media." Journal of Heat and Mass Transfer Research 10, no. 1 (2023): 87-100.
[3] Tajik, Milad (Tajik Jamal-Abad), Maziar Dehghan, and Amirhossein Zamzamian. "Analysis of Variance of Nanofluid Heat Transfer Data for Forced Convection in Horizontal Spirally Coiled Tubes." Journal of Heat and Mass Transfer Research 2, no. 2 (2015): 45–50. https://doi.org/10.22075/jhmtr.2015.348.
[4] Rahman, Md Atiqur, SM Mozammil Hasnain, Shatrudhan Pandey, Anipa Tapalova, Nurgali Akylbekov, and Rustem Zairov. "Review on nanofluids: preparation, properties, stability, and thermal performance augmentation in heat transfer applications." ACS omega 9, no. 30 (2024): 32328-32349.
[5] Khaledi, Omid, Seyfolah Saedodin, and Seyed Hadi Rostamian. "Energy, Hydraulic and Exergy Analysis of a Compound Parabolic Concentrator Using Hybrid Nanofluid: An Experimental Study." International Communications in Heat and Mass Transfer 136 (2022): 106181.
[6] Parvar, Mojtaba, Seyfolah Saedodin, and Seyed Hadi Rostamian. "Experimental Study on the Thermal Conductivity and Viscosity of Transformer Oil–Based Nanofluid Containing ZnO Nanoparticles." Journal of Heat and Mass Transfer Research 7, no. 1 (2020): 77–84.
[7] Tajik, Milad (Tajik Jamal-Abad), Maziar Dehghan, Seyfolah Saedodin, Mohammad Sadegh Valipour, and Amirhossein Zamzamian. "An Experimental Investigation of Rheological Characteristics of Non-Newtonian Nanofluids." Journal of Heat and Mass Transfer Research 1, no. 1 (2014): 17–23.
[8] Biswas, Nabarun, Suman Kumar Mandal, Ishan Bhagwatkar, Raman Kumar, Jatinder Kaur, A. Bhowmik, Kishan Choudhuri, and Biplab Bhattacharjee. "Effect of nanoparticle-based lubricants on various performance characteristics of journal bearings: A review." Engineering Research Express (2025).
[9] Viesca, J. L., A. Hernández Battez, R. González, R. Chou, and J. J. Cabello. "Antiwear properties of carbon-coated copper nanoparticles used as an additive to a polyalphaolefin." Tribology International 44, no. 7-8 (2011): 829-833.
[10] Liu, Gang, X. Li, B. Qin, D. Xing, Y. Guo, and R. Fan. "Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface." Tribology Letters 17, no. 4 (2004): 961-966.
[11] Tang, Zhenglin, and Shaohui Li. "A review of recent developments of friction modifiers for liquid lubricants (2007–present)." Current Opinion in Solid State and Materials Science 18, no. 3 (2014): 119-139.
[12] Sarma, Pullela K., Vadapalli Srinivas, Vedula Dharma Rao, and Ayyagari Kiran Kumar. "Experimental study and analysis of lubricants dispersed with nano Cu and TiO2 in a four-stroke two wheeler." Nanoscale research letters 6, no. 1 (2011): 233.
[13] Padgurskas, Juozas, Raimundas Rukuiza, Igoris Prosyčevas, and Raimondas Kreivaitis. "Tribological properties of lubricant additives of Fe, Cu and Co nanoparticles." Tribology International 60 (2013): 224-232.
[14] Vadiraj, A., G. Manivasagam, K. Kamani, and V. S. Sreenivasan. "Effect of nano oil additive proportions on friction and wear performance of automotive materials." Tribology in Industry 34, no. 1 (2012): 3.
[15] Wu, Y. Y., W. C. Tsui, and T. C. Liu. "Experimental analysis of tribological properties of lubricating oils with nanoparticle additives." Wear 262, no. 7-8 (2007): 819-825.
[16] Battez, A. Hernández, Rubén González, J. L. Viesca, J. E. Fernández, JM Díaz Fernández, A. Machado, R. Chou, and J. Riba. "CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants." Wear 265, no. 3-4 (2008): 422-428.
[17] Asrul, M., N. W. M. Zulkifli, H. H. Masjuki, and M. A. Kalam. "Tribological properties and lubricant mechanism of nanoparticle in engine oil." Procedia Engineering 68 (2013): 320-325.
[18] Ettefaghi, Ehsan-o-llah, Hojjat Ahmadi, Alimorad Rashidi, Seyed Saeid Mohtasebi, and Mahshad Alaei. "Experimental evaluation of engine oil properties containing copper oxide nanoparticles as a nanoadditive." International Journal of Industrial Chemistry 4, no. 1 (2013): 28.
[19] Jatti, Vijaykumar S., and T. P. Singh. "Copper oxide nano-particles as friction-reduction and anti-wear additives in lubricating oil." Journal of Mechanical Science and Technology 29, no. 2 (2015): 793-798.
[20] Kotia, Ankit, Sheeba Borkakoti, and Subrata Kumar Ghosh. "Wear and performance analysis of a 4-stroke diesel engine employing nanolubricants." Particuology 37 (2018): 54-63.
[21] Ali, Mohamed Kamal Ahmed, Hou Xianjun, Liqiang Mai, Chen Bicheng, Richard Fiifi Turkson, and Cai Qingping. "Reducing frictional power losses and improving the scuffing resistance in automotive engines using hybrid nanomaterials as nano-lubricant additives." Wear 364 (2016): 270-281.
[22] Ali, Mohamed Kamal Ahmed, Hou Xianjun, Liqiang Mai, Cai Qingping, Richard Fiifi Turkson, and Chen Bicheng. "Improving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additives." Tribology International 103 (2016): 540-554.
[23] Kotia, Ankit, Gaurab Kumar Ghosh, Isha Srivastava, Piyush Deval, and Subrata Kumar Ghosh. "Mechanism for improvement of friction/wear by using Al2O3 and SiO2/Gear oil nanolubricants." Journal of Alloys and Compounds 782 (2019): 592-599.
[24] Baş, Hasan, and Yunus E. Karabacak. "Investigation of the effects of boron additives on the performance of engine oil." Tribology Transactions 57, no. 4 (2014): 740-748.
[25] Rashidi, Alimorad, Hojjat Ahmadi, Seyed Saeid Mohtasebi, and Mahnaz Pourkhalil. "Thermal and rheological properties of oil-based nanofluids from different carbon nanostructures." International Communications in Heat and Mass Transfer 48 (2013): 178-182.
[26] Dinesh, R., MJ Giri Prasad, R. Rishi Kumar, N. Jerome Santharaj, J. Santhip, and AS Abhishek Raaj. "Investigation of tribological and thermophysical properties of engine oil containing nano additives." Materials Today: Proceedings 3, no. 1 (2016): 45-53.
[27] Lee, Jaekeun, Sangwon Cho, Yujin Hwang, Changgun Lee, and Soo H. Kim. "Enhancement of lubrication properties of nano-oil by controlling the amount of fullerene nanoparticle additives." Tribology Letters 28, no. 2 (2007): 203-208.
[28] Lee, Jaekeun, Sangwon Cho, Yujin Hwang, Han-Jong Cho, Changgun Lee, Youngmin Choi, Bon-Chul Ku et al. "Application of fullerene-added nano-oil for lubrication enhancement in friction surfaces." Tribology International 42, no. 3 (2009): 440-447.
[29] Jeng, Yeau-Ren, Yao-Huei Huang, Ping-Chi Tsai, and Gan-Lin Hwang. "Tribological properties of carbon nanocapsule particles as lubricant additive." Journal of tribology 136, no. 4 (2014): 041801.
[30] Zin, V., F. Agresti, S. Barison, L. Colla, E. Mercadelli, M. Fabrizio, and C. Pagura. "Tribological properties of engine oil with carbon nano-horns as nano-additives." Tribology Letters 55, no. 1 (2014): 45-53.
[30] Ajay Vardhaman, B. S., M. Amarnath, J. Ramkumar, and Prabhat K. Rai. "Experimental investigations to enhance the tribological performance of engine oil by using nano-boric acid and functionalized multiwalled carbon nanotubes: A comparative study to assess wear in bronze alloy." Journal of Materials Engineering and Performance 27, no. 6 (2018): 2782-2795.
[32] Ettefaghi, Ehsan-o-llah, Hojjat Ahmadi, Alimorad Rashidi, and Seyed-Saeid Mohtasebi. "Investigation of the anti-wear properties of nano additives on sliding bearings of internal combustion engines." International Journal of Precision Engineering and Manufacturing 14, no. 5 (2013): 805-809.
[33] Ahmadi, Nassim, Seyfolah Saedodin, and Seyed Hadi Rostamian. "Experimental investigation of rheological behavior of fullerene/hydraulic oil nanofluid." Chemical Papers 74, no. 11 (2020): 3963-3973.
[34] Rostamian, Seyed Hadi, Seyfolah Saedodin, Seyed Abbas Asgari, and Amir Hasan Salarian. "Effect of C60-SiO 2 hybrid nanoparticles on thermophysical and tribological properties of a multigrade engine oil: an experimental study." Journal of Thermal Analysis & Calorimetry 147, no. 1 (2022).
[35] Greenberg, R., G. Halperin, I_ Etsion, and Reshef Tenne. "The effect of WS2 nanoparticles on friction reduction in various lubrication regimes." Tribology Letters 17, no. 2 (2004): 179-186.
[36] Gullac, Burak, and Ozgen Akalin. "Frictional characteristics of IF-WS2 nanoparticles in simulated engine conditions." Tribology Transactions 53, no. 6 (2010): 939-947.
[37] Vats, Bhavya Nidhi, and Monika Singh. "Evaluation of tribological properties of graphene oxide dispersed paraffin oil." Materials Today: Proceedings 25 (2020): 557-562.