ارائه یک روش تکرارشونده مبتنی بر نرخ هشدار نادرست ثابت جهت آشکارسازی اهداف طویل در حضور کلاتر سنگین دریا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

2 دانشکده مهندسی و فناوری، دانشگاه مازندران، بابلسر، ایران

چکیده

هدف اصلی استفاده از سیستم‌های رادار مراقبت دریایی، آشکارسازی اهداف در محیط دریا است که بر اساس آن وجود یا عدم وجود هدف (اهداف) تصمیم‌گیری می‌گردد. تاکنون روش‌های مختلفی جهت آشکارسازی اهداف راداری ارائه گردیدند که روش‌های مبتنی ‌بر نرخ هشدار نادرست ثابت (CFAR) از پذیرفته‌شده‌ترین و رایج‌ترین آن‌ها به شمار می‌روند. بالا بودن دامنه‌ی چندین دروازه‌برد متوالی سبب می‌گردد که روش‌های مذکور علی‌رغم عملکرد مناسب در آشکارسازی اهداف سوزنی در محیط واقعی راداری، قادر به آشکارسازی اهداف طویل نباشند. در این مقاله، روشی تکرار شونده مبتنی ‌بر آشکارساز کوچک‌ترین میانگین نرخ هشدار نادرست ثابت(ISO-CFAR) پیشنهاد می‌گردد که براساس آن اهداف طویل راداری قابل آشکارسازی باشند. به این منظور دروازه‌بردهای شکل‌گرفته‌ی حاصل از هر پردازش راداری، به عنوان ورودی آشکارسازهای میانگین سلول، بزرگ‌ترین میانگین، کوچک‌ترین میانگین و کوچک‌ترین میانگین تکرارشونده‌ی مبتنی ‌بر نرخ هشدار نادرست ثابت پیشنهادی درنظر گرفته می‌شوند و عملکرد آشکارسازهای مذکور در آشکارسازی ابتدا، انتها و طول سلول‌های هدف ارزیابی و با یکدیگر مقایسه می‌گردد. نتایج نشان می‌دهد که احتمال آشکارسازی سلول‌های هدف در آشکارساز پیشنهادی در مقایسه با آشکارسازهای مذکور، که معمولا در سیستم‌های راداری استفاده می‌شوند، به ‌طرز قابل توجهی بهبود یافته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Proposing an Iterative Method Based on Constant False Alarm Rate for Detecting Long Radar Targetsin the Presence of Heavy Sea Clutter

نویسندگان [English]

  • Alireza Emadi Amiri 1
  • Seyed Mehdi Hosseini Andargoli 1
  • Iman Esmaeili Pain Efrakoti 2
1 Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran
2 Faculty of Engineering and Technology, University of Mazandaran, Babolsar, Iran
چکیده [English]

The principal aim of utilizing maritime surveillance radar systems is to radar target detection (RTD) in the maritime setting, and to make informed decisions regarding their presence or absence. Numerous techniques have been put forth for the detection of radar targets, with constant false alarm rate (CFAR) methods serving as the most extensively accepted and prevalent. However, Despite the good performance exhibited by the previously mentioned methods in detecting narrow (impulsive) targets, the high amplitude of several successive range-gates renders them incapable of detecting long targets. In this article, an iterative recurrent method founded on the smallest cell of the constant false alarm rate (ISO-CFAR) has been proposed, which enables the detection of long radar targets. To achieve this, range gates produced by each radar processing are regarded as the input for CA, GO, SO, and proposed ISO CFAR and the performance of the aforementioned detectors is assessed and contrasted for detecting the start, end, and length of the target cells. The results reveal a noteworthy enhancement in the probability of detecting target cells through the use of the proposed CFAR detector as compared to the aforementioned CFAR detectors that are commonly employed in radar systems.

کلیدواژه‌ها [English]

  • Radar target detection
  • Constant false alarm rate
  • Surveillance radar
  • Sea clutter
  • High resolution range
[1] W. Jiang, Y. Ren, Y. Liu, and J. Leng. "Artificial neural networks and deep learning techniques applied to radar target detection: A review." Electronics 11, no. 1 (2022): 156-168.
[2] V.S. Shrivathsa. "Cell Averaging-Constant False Alarm Rate Detection in Radar." International Research Journal of Engineering and Technology (IRJET) 7, no. 2018 (2018): 2433-2438.
[3] G.M. Hatem, T.R. Saeed, and J.W. Abdul Sadah. "Comparative study of combined CFAR algorithms for non-homogenous environment." Procedia Computer Science 131 (2018): 58-64.
[4] A. Coluccia, A. Fascista, and G. Ricci. "CFAR feature plane: A novel framework for the analysis and design of radar detectors." IEEE Transactions on Signal Processing 68 (2020): 3903-3916.
[5] Z. Cao, J. Li, C. Song, Z. Xu, and X. Wang. "A novel CFAR algorithm for multi-target detection with FMCW radar." IEEE Global Communications Conference (2020): 1-6.
[6] K. Liu, Y. Li, P. Wang, X. Peng, H. Liao, and W. Li. "A CFAR Detection Algorithm Based on Clutter Knowledge for Cognitive Radar." IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 106, no. 3 (2023): 590-599.
[7] V. Amanipour, and A. Olfat. "CFAR detection for multistatic radar." Signal Processing 91, no. 1 (2011): 28-37.
[8] C. Kuang, C. Wang, B. Wen, Y. Hou, and Y. Lai. "An improved CA-CFAR method for ship target detection in strong clutter using UHF radar." IEEE Signal Processing Letters 27 (2020): 1445-1449.
[9] L.P.J. Jiménez, F.D.A. García, M.C.L. Alvarado, G. Fraidenraich, and E.R. De Lima. "A general CA-CFAR performance analysis for weibull-distributed clutter environments." IEEE Geoscience and Remote Sensing Letters 19 (2022): 4025-4034.
[10] Y.Z. Abdel, and A. Tiako. "Moving Target Detection Using CA, so and GO-CFAR Detectors in Nonhomogeneous Environment. " SSRN Electronic Journal, January 1, (2023):12-17.
[11] P.E. Pace, and L. Lamoyne Taylor. "False alarm analysis of the envelope detection GO-CFAR processor." IEEE Transactions on Aerospace and Electronic Systems 30, no. 3 (1994): 848-864.
[12] G.M. Hatem, J.W. Abdul Sadah, and T.R. Saeed. "Comparative study of various cfar algorithms for non-homogenous environments." In IOP Conference Series: Materials Science and Engineering, no. 1 (2018): 1757-1769.
[13] H.A. Meziani, and F. Soltani. "Performance analysis of some CFAR detectors in homogeneous and non-homogeneous Pearson-distributed clutter." Signal Processing 86, no. 8 (2006): 2115-2122.
[14] K.D. Ward, C.J. Baker, and S. Watts. "Maritime surveillance radar. Part 1: Radar scattering from the ocean surface." In IEE Proceedings F (Radar and Signal Processing), no. 2 (1990): 51-62.
[15] M. Sahed, E. Kenane, A. Khalfa, and F. Djahli. "Exact Closed-Form P fa Expressions for CA-and GO-CFAR Detectors in Gamma-Distributed Radar Clutter." IEEE Transactions on Aerospace and Electronic Systems (2022): 4674-4679.
[16] I. Nasso, and F. Santi. "Maritime moving target detection and localisation technique for Global Navigation Satellite Signals‐based passive multistatic radar." IET Radar, Sonar & Navigation 18, no. 1 (2024): 93-106.
[17] H. Wankun. "Experimental results of maritime target detection based on SVM classifier." IEEE 3rd International Conference on Information Communication and Signal Processing (2020): 179-182.
[18] R. Raghu, N. Unnikrishnan, R. Rajesh, and R. Sharma. "CFAR Detection of Extended Targets for Medium Resolution Radars." IEEE International Conference on Electronics, Computing and Communication Technologies (2021): 1-6.
[19] S. Jie, and X. Wei. "CFAR Detection of HRRP of Sea Targets based on K Distribution." 4th International Conference on Information Communication and Signal Processing (2021): 352-356.
[20] M.M. Horst, F.B. Dyer, and M.T. Tuley. "Radar sea clutter model." Antennas and Propagation (1978): 6-10.
[21] L. Cohen. "The generalization of the Wiener-Khinchin theorem." In Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing (1998): 1577-1580.
[22] K.D. Ward, S. Watts, and R.J. Tough. "Sea clutter: scattering, the K distribution and radar performance. " IET  Digital Library (2006).
دوره 23، شماره ویژه 81
جشن پنجاهمین سالگرد تاسیس دانشگاه سمنان- در حال تکمیل شدن
تیر 1404
صفحه 249-263
  • تاریخ دریافت: 18 اردیبهشت 1403
  • تاریخ بازنگری: 30 شهریور 1403
  • تاریخ پذیرش: 04 مهر 1403