بررسی تجربی اثر جاذب‌های صوتی در کاهش صدای منتشر شده از یک ماشین لباسشویی عمودی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی مکانیک، مجتمع آموزش عالی گناباد، گناباد، ایران

چکیده

آسیب‌های ناشی از صداهای مزاحم و ناخواسته در کاربردهای صنعتی و خانگی بر کسی پوشیده نیست. اهمیت کنترل این صداهای مزاحم و ناخواسته به‌ویژه در کاربردهای خانگی محققین بسیاری را جذب این حوزه نموده است. در این پژوهش هدف بررسی تجربی کاهش صدای منتشر شده از یک ماشین لباس‌شویی عمودی خانگی می‌باشد. بدین منظور جاذب‌های صوتی مختلف پیشنهاد و مورد بررسی قرار گرفتند. در این راستا، یک بانک داده به‌وسیله نتایج حاصل از این آزمایش‌ها ایجاد شده است. بانک داده فوق حاوی صدای ذخیره شده در چهار جهت ماشین لباس‌شویی در فاصله‌های مختلف در حضور جاذب‌های صوتی پیشنهادی می‌باشد. در روش پیشنهادی نخست تأثیر جاذب‌های صوتی بر کاهش شدت صدا بررسی می‌شود. سپس در ادامه نحوه اثرگذاری جاذب‌های صوتی بر سیگنال‌های ذخیره شده در فضای زمان- فرکانس بحث می‌شود. نتایج حاصل شده حاکی از تأثیرپذیری مستقیم سیگنال ذخیره شده از جاذب‌های صوتی مورد استفاده در تمامی جهات با شدت‌های تقریباً یکسان است. کاهش شدت صدا در حضور جاذب‌های صوتی مختلف متفاوت و میانگین آن 35/6 دسی‌بل بوده است. بهترین و ضعیف‌ترین عملکرد، به‌ترتیب مربوط به الیاف فوتر و پلاستوفوم با کاهش 8 دسی‌بل (10 درصد) و 5/4 دسی‌بل (4/5 درصد) در شدت صدا گزارش شده است. علاوه بر این، آزمایش‌ها نشان می‌دهد که استفاده از جاذب‌های صوتی مناسب می‌تواند به طور قابل توجهی کیفیت زندگی در محیط‌های خانگی را افزایش داده و مشکلات ناشی از صداهای مزاحم و ناخواسته را کاهش دهد، که این امر می‌تواند تأثیر مثبت زیادی بر کیفیت زندگی کاربران داشته باشد.

کلیدواژه‌ها


عنوان مقاله [English]

An Experimental Study on the Effect of Acoustic Absorbers in Reducing Noise Emitted by a Top Loading Washing Machine

نویسندگان [English]

  • Seyed Amir Hoseini Sabzevari
  • Marzieh Noorani
Department of Mechanical Engineering, University of Gonabad, Gonabad, Iran
چکیده [English]

The adverse effects of unwanted and disruptive noise in industrial and domestic applications are widely recognized. The significance of controlling such noise, particularly in household settings, has drawn the attention of many researchers to this field. This study aims to experimentally investigate the reduction of noise emitted by a vertical domestic washing machine. To this end, various acoustic absorbers were proposed and examined. A database was constructed using the results of these experiments, which includes recorded noise data from four directions around the washing machine at varying distances, in the presence of the proposed acoustic absorbers. In the proposed method, the effect of acoustic absorbers on noise intensity reduction is first evaluated. Subsequently, the impact of these absorbers on the recorded signals in the time-frequency domain is discussed. The findings indicate a direct influence of the acoustic absorbers on the recorded signals in all directions, with nearly equal intensity reductions. The reduction in sound intensity varied depending on the type of acoustic absorber used, with an average decrease of 6.35 dB. The highest and lowest performance were recorded for felt fiber and polystyrene foam, resulting in sound intensity reductions of 8 dB (10%) and 4.5 dB (4.5%), respectively. Additionally, the experiments show that the use of appropriate acoustic absorbers can significantly improve the quality of life in domestic environments by reducing unwanted and disruptive noise, thereby having a substantial positive effect on user well-being.

کلیدواژه‌ها [English]

  • Noise control
  • Acoustical properties
  • Sound absorber
  • Sound pressure level
  • Signal processing
[1] Fatima, S., and A. R. Mohanty. "Noise control of home appliances—The green way." Noise & Vibration Worldwide 43, no. 7 (2012): 26-34.
[2] Jeong, Un-Chang, Jin-Su Kim, Jae-Eun Jeong, In-Hyung Yang, and Jae-Eung Oh. "Development of a sound quality index for the wash cycle process of front-loading washing machines considering the impacts of individual noise sources." Applied Acoustics 87 (2015): 183-189.
[3] Spelta, Cristiano, Fabio Previdi, Sergio M. Savaresi, Giuseppe Fraternale, and Nicola Gaudiano. "Control of magnetorheological dampers for vibration reduction in a washing machine." Mechatronics 19, no. 3 (2009): 410-421.
 [4] Hoseini Sabzevari, Seyed Amir, and Seyed Iman Hosseini Sabzevari. "A Novel Influence Function M-Estimator-Based for Active Noise Control." Archives of Acoustics 46 (2021).
[5] Sabzevari, Seyed Amir Hoseini, and Majid Moavenian. "Application of reinforcement learning for active noise control." Turkish Journal of Electrical Engineering and Computer Sciences 25, no. 4 (2017): 2606-2613.
[6] Chrzan, Michael J., and J. David Carlson. "MR fluid sponge devices and their use in vibration control of washing machines." In Smart Structures and Materials 2001: Damping and Isolation, vol. 4331, pp. 370-378. SPIE, 2001.
[7] Papadopoulos, Evangelos, and Iakovos Papadimitriou. "Modeling, design and control of a portable washing machine during the spinning cycle." In 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings (Cat. No. 01TH8556), vol. 2, pp. 899-904. IEEE, 2001.
[8] Xu, Y.C, and X.S. Wen. "An overview on active noise control technology and application." Journal-National University Of Defense Technoligy 23, no. 2 (2001): 119-124.
[9] Kim, Ho-San, Sang-Gil Park, Kwi-Hyun Kang, Jung-Yoon Lee, and Jae-Eung Oh. "The analysis of noise contribution about drum washer under dehydrating condition using multi-dimensional spectral analysis." Transactions of the Korean Society for Noise and Vibration Engineering 17, no. 11 (2007): 1056-1063.
[10] Oh, J. E., J. Y. Lee, J. H. Hong, H. S. Lee, and J. H. Lee. "A study on the evaluation of noise contribution and counterplan about the mechanical structure using multi-dimensional spectral analysis and vector synthesis method." In Proceedings of the KSPE 1998 Annual Autumn Conference, pp. 515-519. 1998.
[11] Koizumi, Takayuki, Nobutaka Tsujiuchi, Shuichi Matsumoto, and Yuji Hirasawa. "Noise prediction of a washing machine considering panel vibration." In IMAC-XXVI Conference and Exposition on Structural Dynamics, Orlando, Florida, USA, pp. 4-7. 2008.
[12] Shimizu, Tatsuya, Hidekazu Funakoshi, Taisuke Kobayashi, and Kenji Sugimoto. "Reduction of noise and vibration in drum type washing machine using Q-learning." Control Engineering Practice 122 (2022): 105095.
[13] Barpanda, Dev, and Jay M. Tudor. "Solutions-based approach for reducing noise in washing machines." Sound and Vibration 19, no. 11 (2009): 6.
[14] Chiariotti, Paolo, Milena Martarelli, Enrico Primo Tomasini, and Ravi Beniwal. "Noise source localization on washing machines by conformal array technique and near field acoustic holography." In Structural Dynamics, Volume 3: Proceedings of the 28th IMAC, A Conference on Structural Dynamics, 2010, pp. 1355-1363. New York, NY: Springer New York, 2011.
[15] Choi, Cheolu, Yongwan Kwon, Dongjoong Kang, Changseop Kim, and Sabum Jung. "Development of Washing Machine Dehydration Unbalance Control Specifications Through Bayesian Optimization." Applied Sciences 15, no. 3 (2025): 1632.
[16] Hashemian, Fatemeh, Haizhou Yang, Yi Wang, Xiaomin Deng, Seungoh Kim, and Raveendran Vaidhyanathan. "Parametric Dynamic Simulation and Bayesian Design Optimization of a Front-Loading Washing Machine." Journal of Vibration Engineering & Technologies 12, no. Suppl 1 (2024): 41-62.
[17] Kalkat, Menderes. "Experimentally vibration and noise analysis of two types of washing machines with a proposed neural network predictor." Measurement 47 (2014): 184-192.
[18] Sun, Xiaojuan, Yanjie Liu, Jianrun Zhang, and Hong Zhang. "Measurement and analysis of a horizontal-axis washing machine for low-frequency abnormal noise." In 2016 13th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 735-739. IEEE, 2016.
[19] Kim, Young-Jong, Dong-Cheol Kim, and Weui-Bong Jeong. "Dynamic modeling and analysis of a quad horizontal damper system for transient vibration reduction in top loading washing machine." Journal of Mechanical Science and Technology 33, no. 3 (2019): 1123-1130.
[20] Liu, Bin, Tao Feng, Xue Wu, and Nan Li. "Noise radiation characteristics of the washing machine based on sound intensity measurement." Advanced Materials Research 482 (2012): 1406-1409.
[21] Chen, Hai-Wei, Jun-Jie Huang, Jing Zhu, and Ya-Cheng Shi. "Transient vibration suppression of a vertical-axis washing machine using a new type of damper." Journal of Mechanical Science and Technology 39, no. 3 (2025): 1047-1058.
 [22] Jeong, Ji-Su, Jeong-Hyun Sohn, Chan-Jung Kim, and Jin-Hong Park. "Dynamic analysis of top-loader washing machine with unbalance mass during dehydration and its validation." Journal of Mechanical Science and Technology 37, no. 4 (2023): 1675-1684.
[23] Moravec, Marek, Miroslav Badida, Miriama Pinosova, Gabriela Ižaríková, and Lydia Sobotova. "Validation of the Developed Psychoacoustic Model for Sound Quality Valuation of Washing Machines." Applied Sciences 15, no. 9 (2025): 4645.
[24] Albero, Cristian, and Beatriz Sánchez-Tabuenca. "Experimental Methodology to Characterize the Noise Paths in a Horizontal-Axis Washing Machine." In Acoustics, vol. 5, no. 2, pp. 476-489. MDPI, 2023.
[25] Arenas, Jorge P., and Malcolm J. Crocker. "Recent trends in porous sound-absorbing materials." Sound & vibration 44, no. 7 (2010): 12-18.
[26] Paul, Parikshit, Meenakshi Ahirwar, and B. K. Behera. "Acoustic behavior of three-dimensional woven fabrics and their composites: role of fiber type and weave architecture." The Journal of The Textile Institute 115, no. 11 (2024): 2258-2271.
[27] Paul, Parikshit, Meenakshi Ahirwar, and B. K. Behera. "Influence of airflow resistance on acoustic behaviour of needle-punched nonwoven structures." The Journal of The Textile Institute 116, no. 3 (2025): 499-511.
[28] Sabzevari, Seyed Amir Hoseini, and Mojtaba Vakili-Azghandi. "Acoustic source localization in an isotropic plate: Damper’s coverage length optimization based on response surface method (RSM)." Measurement 199 (2022): 111476.
[29] Nazari, Shabnam, Tatiana Alexiou Ivanova, Rajesh Kumar Mishra, Miroslav Müller, Mehdi Akhbari, and Zohreh Esfahani Hashjin. "Effect of natural fiber and biomass on acoustic performance of 3D hybrid fabric-reinforced composite panels." Materials 17, no. 23 (2024): 5695.
[30] Cho, Jung-Soo, Hyun-Yong Jeong, and Kyung-Chul Kong. "Analysis of dynamic model of a top-loading laundry machine with a hydraulic balancer." International Journal of Precision Engineering And Manufacturing 15, no. 8 (2014): 1615-1623.
[31] Sabzevari, Seyed Amir Hoseini, and Seyed Morteza Javadpour. "Leakage localization in an underground pressurized pipeline in steady-state." International Journal of Pressure Vessels and Piping 205 (2023): 104979.
[32] Hoseini Sabzevari, Seyed Amir, and Majid Moavenian. "Sound localization in plates using low cost acoustical sensors." Modares Mechanical Engineering 15, no. 6 (2015): 190-196. (in Persian)