[1] Jiang, Q., Wen, H., (2011). “Thermodynamics of Materials”. Berlin: Springer.
[2] Yaghmaee, MS., Shokri,B., (2007). “Effect o size on bulk and surface cohesion energy of metallic nano particles”. Smart Materials and Structures, Vol. 16, pp. 349-354
[3]Chamaani.A, Marzbanrad.E, Rahimipour.MR, M. Yaghmaee.MS, Aghaei.A, DarvishKamachali.R, YasharBehnamian., (2011). “Thermodynamics and molecular dynamics investigation of possible new critical size for surface and inner cohesive energy of Al nanoparticles”. Nanoparticle Research, Vol. 13, pp.6059-6067
[4] Mei.QS, Lu.K., (2007). “Melting and superheatimg of crystalline solids: from bulk to nanocrystals” Progress in Material Science, Vol. 52, pp. 1175-1262
[5] W.Sutherland, Philos. Mag 32(1891)42
[6] F.A.Lindemann,Z.Phys11(1910)609
[7] Hoss.A., Nold.M., von P.Blanckenhagen, Mayer.O., (1992). “Roughening of surface initiate melting”. Phys Rev B, Vol. 45, pp. 8714
[8] Hakkinen.H., Mannien.M., (1992). “Coputer Simulation of disorder and premelting of low index faces of copper”. Phys Rev B, Vol. 46, pp.1725
[9] Georgiev.N., Pavlovska.A., Bauer.E., (1995). “Surface disordering without surface roughening”. Phys Rev B, Vol. 52, pp. 2878
[10] Chen Et., Barnet RN., Landman,U,. (1990). Phys Rev B, Vol. 4, pp.1439
[11] Frenken.W.Joost.M,. Van der Veen.JF,. (1985). “Observation of surface melting”. Phys Rev, Vol. 54, Num. 2
[12] Frenken.,W.,Joost., M., Aree.,Peter.,M.,J, and van der Veen.,J.,Friso, (1986). “Observation of surface initiate melting” Phys Rev B Vol. 34, Num. 11
[13] Kaptay.G., Csicsovszki.G., Yaghmaee.MS., (2003). “An absolute scale for the cohesion energy of pure metals”. Materials Science Forum. 414-415, pp.235-240
[14] Frenken JWM., Van der Veen.JF,. (1985). “Dynamics and melting of surface” . Phys Rev Lett, Vol. 134,. Num. 54
[15] Di Tolla FD, Erio T, F.Ercolessi. Conference proceedings, ‘‘Monte Carlo and molecular dynamics of condensed matter systems’’, Vol 49. Bologna: SIF; 1996 [Chapter 14]
[16] Susnik.,J, Sturm.,R, Grum.,J,. (2012). “Influence of Laser Surface Remelting on Al-Si Alloy Properties”, Journal of Mechanical Engineering, Vol. 58, pp. 614-620
[17] Atkins,P,.W, (2001). “Physical Chemistry”, 6thedn (Oxford:University Press)
[18] Sun.,Ch q, Wang.,Y, Tay,.BK, Li,.S, Huang,.H, Zhang,.Y, (2002). “Correlation between the melting point of nanosolids and the cohesive energy of a surface atom”. J.Phys.Chem.B, Vol. 106, pp. 10701-5
[19] Barin I, (1993). “thermodynamical data of pure substances”, VCH, Weinheim,
[20] Chase,.MW, (1985). “Janaf thermochemical tables”, J. Phys. Chem. Ref. Data, Vol. 1,Suppl. 1
[21] Thermodynamic Tables From National Institute of Standards and Technology
http://www.nist.gov/index.html
[22] Yaghmaee.,MS, Riahifar.,R, Jahangir.,V, “Thermodynamics modeling of the surface cohesive energy and interfacial energy (solid-gas) of unary systems for different crystallographic structures and planes”, Project no. 321391002, Materials and Energy Research Center, 1391, Iran
[23] Kaptay.,G, Bader,.E, Bolyan,.L. (2000). “Interfacial faces and energies relevant to production of metal matrix composites”. Material Science Forum 329-330, pp. 151-156
[24] Barentt,.R,.N, Landman,.Uzi, (1991). “Surface premelting of Cu (110)” Phys Rev B Vol. 44, pp. 7
[25] Kojima,.R, Susa,M, (2002). “Surface melting of copper with (100), (110), and (111) orientations in term of molecular dynamics simulation”, High Temperatures - High Pressures, Vol 34(6), pp. 639 – 648
[26] Kojima,.R, Sato,.T, Susa,.Masahiro, (2001). “Orientation dependence of surface structure change of copper associated with melting”, Thermophys prop, Vol22, pp.452-454