[1] Rao, S. S. (2009). Engineering optimization: theory and practice. Wiley.
[2] Nocedal, J., & Wright, S. J. (1999). Numerical optimization. Springer verlag.
[3] AlRashidi, M. R., & El-Hawary, M. E. (2007). Hybrid particle swarm optimization approach for solving the discrete OPF problem considering the valve loading effects. IEEE Transactions on Power Systems, , 22(4), 2030-2038.
[4] Blum, C., Puchinger, J., Raidl, G. R., & Roli, A. (2011). Hybrid metaheuristics in combinatorial optimization: A survey. Applied Soft Computing, 11(6), 4135-4151.
[5] Lazar, A, Reynolds, R.G. (2003) Heuristic knowledge discovery for archaeological data using genetic algorithms and rough sets, Artificial Intelligence Laboratory, Department of Computer Science, Wayne State University..
[6] Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 26(1), 29-41.
[7] Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459-471.
[8] Li LX, Shao ZJ, Qian JX (2002) An optimizing method based on autonomous animals: fish-swarm algorithm. Syst Eng Theory Practice 22(11):32–38.
[9] DasGupta, D. (1998). Artficial Immune Systems and Their Applications. Springer-Verlag New York, Inc..
[10] Passino, K. M. (2002). Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Systems, 22(3), 52-67.
[11] Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm. Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), 65-74.
[12] Erol, O. K., & Eksin, I. (2006). A new optimization method: big bang–big crunch. Advances in Engineering Software, 37(2), 106-111.
[13] Simon, D. (2008). Biogeography-based optimization. IEEE Transactions on Evolutionary Computation, 12(6), 702-713.
[14] Kaveh, A., & Talatahari, S. (2010). A novel heuristic optimization method: charged system search. Acta Mechanica, 213(3), 267-289.
[15] Lam, A. Y., & Li, V. O. (2010). Chemical-reaction-inspired metaheuristic for optimization. IEEE Transactions on Evolutionary Computation, 14(3), 381-399.
[16] Rubinstein, R. (1999). The cross-entropy method for combinatorial and continuous optimization. Methodology and computing in applied probability,1(2), 127-190.
[17] Yang, X. S., & Deb, S. (2009, December). Cuckoo search via Lévy flights. IEEE World Congress on InNature & Biologically Inspired Computing, 2009. NaBIC 2009. (pp. 210-214)..
[18] Sakulin, A., & Puangdownreong, D. (2012). A novel meta-heuristic optimization algorithm: current search. 11th WSEAS international conference on Artificial Intelligence, Knowledge Engineering and Data Bases, 125-130.
[19] Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization, 11(4), 341-359.
[20] Birbil, Ş. İ., & Fang, S. C. (2003). An electromagnetism-like mechanism for global optimization. Journal of global optimization, 25(3), 263-282.
[21] H.P. Schwefel, Evolutionsstrategie und numerische Optimierung, Dissertation, TU Berlin, Germany, 1975.
[22] Fogel, L. J., Owens, A. J., & Walsh, M. J. (1966). Artificial intelligence through simulated evolution.
[23] Yang, X. S. (2009). Firefly algorithms for multimodal optimization. Stochastic algorithms: foundations and applications, 169-178.
[24] Shah-Hosseini, H. (2011). Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation. International Journal of Computational Science and Engineering, 6(1), 132-140.
[25] Holland, J. H. (1975). Adaptation in natural and artificial systems, University of Michigan press. Ann Arbor, MI, 1(97), 5.
[26] Krishnanand, K. N., & Ghose, D. (2009). Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm intelligence, 3(2), 87-124.
[27] Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2009). GSA: a gravitational search algorithm. Information Sciences, 179(13), 2232-2248.
[28] He, S., Wu, Q. H., & Saunders, J. R. (2006, July). A novel group search optimizer inspired by animal behavioural ecology. IEEE Congress on In Evolutionary Computation, CEC 2006. (pp. 1272-1278).
[29] Lee, K. S., & Geem, Z. W. (2005). A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice.Computer methods in applied mechanics and engineering, 194(36), 3902-3933.
[30] Abbass, H. A. (2001). MBO: Marriage in honey bees optimization-A haplometrosis polygynous swarming approach. IEEE Congress on Evolutionary Computation, 2001. (Vol. 1, pp. 207-214)..
[31] Oftadeh, R., & Mahjoob, M. J. (2009, September). A new meta-heuristic optimization algorithm: Hunting Search. IEEE Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control, 2009. ICSCCW 2009. (pp. 1-5).
[32] Atashpaz-Gargari, E., & Lucas, C. (2007, September). Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. IEEE Congress on Evolutionary Computation, 2007. CEC 2007. (pp. 4661-4667).
[33] Shah_Hosseini, H. (2007, September). Problem solving by intelligent water drops. IEEE Congress on Evolutionary Computation, 2007. CEC 2007. (pp. 3226-3231)..
[34] Qin, J. (2009, November). A new optimization algorithm and its application—Key cutting algorithm. IEEE International Conference on Grey Systems and Intelligent Services, 2009. GSIS 2009. (pp. 1537-1541).
[35] Mucherino, A., & Seref, O. (2007, November). Monkey search: a novel metaheuristic search for global optimization. In Data Mining, Systems Analysis and Optimization in Biomedicine (Vol. 953, pp. 162-173).
[36] Premaratne, U., Samarabandu, J., & Sidhu, T. (2009, December). A new biologically inspired optimization algorithm. IEEE International Conference on Industrial and Information Systems (ICIIS), 2009 (pp. 279-284).
[37] Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization. IEEE International Conference on Neural Networks, 1995. Proceedings., (Vol. 4, pp. 1942-1948).
[38] Han, K. H., & Kim, J. H. (2002). Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Transactions on Evolutionary Computation, 6(6), 580-593.
[39] Rabanal, P., Rodríguez, I., & Rubio, F. (2007). Using river formation dynamics to design heuristic algorithms. Unconventional Computation, 163-177.
[40] Dai, C., Chen, W., & Zhu, Y. (2006, November). Seeker optimization algorithm. IEEE International Conference on Computational Intelligence and Security, (Vol. 1, pp. 225-229).
[41] Eusuff, M. M., & Lansey, K. E. (2003). Optimization of water distribution network design using the shuffled frog leaping algorithm. Journal of Water Resources Planning and Management, 129(3), 210-225.
[42] Kirkpatrick, S., & Vecchi, M. P. (1983). Optimization by simmulated annealing.science, 220(4598), 671-680.
[43] Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Computers & Operations Research, 13(5), 533-549.
[44] Mladenović, N., & Hansen, P. (1997). Variable neighborhood search.Computers & Operations Research, 24(11), 1097-1100.
[45] Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M. (2012). Water cycle algorithm–A novel Metaheuristic optimization method for solving constrained engineering optimization problems. Computers & Structures.
[46] Prügel-Bennett, A. (2010). Benefits of a population: five mechanisms that advantage population-based algorithms. Evolutionary Computation, IEEE Transactions on, 14(4), 500-517.
[47] Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67-82.
[48] Eiben, A. E., Hinterding, R., & Michalewicz, Z. (1999). Parameter control in evolutionary algorithms. Evolutionary Computation, IEEE Transactions on, 3(2), 124-141.
[49] Regis, R. G., & Shoemaker, C. A. (2004). Local function approximation in evolutionary algorithms for the optimization of costly functions. IEEE Transactions on Evolutionary Computation, 8(5), 490-505.
[50] Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58-73.