جریان سیال غیر نیوتنی بر روی مرز با سرعت متغیر و در شرایط ناپایا؛ ارائه متغیر تشابهی و روش حل نوین

نویسندگان

دانشگاه سمنان

چکیده

جریان لایه‌ای برای یک سیال غیر نیوتنی تراکم ناپذیر ساکن بر روی یک صفحه کشسان متحرک در حالت ناپایا بررسی و متغیر تشابهی و متعاقب آن معادله حاکم بر جریان در دستگاه تشابهی، ارائه شده است. برای مدلسازی سیال غیر نیوتنی، از مدل قانون توانی استفاده شده است. سرعت صفحه کشسان تابعی از زمان و طول صفحه در نظر گرفته شده است. به کمک متغیر تشابهی ارائه شده، سه متغیر مستقل دستگاه فیزیکی (t,x,y) به تنها یک متغیر مستقل (η) تبدیل یافته است. به کمک تبدیل تشابهی، سیستم دستگاه معادلات پاره‌ای حاکم در دستگاه فیزیکی به یک معادله دیفرانسیل معمولی غیر خطی در دستگاه تشابهی تبدیل و سپس توسط الگوریتم ارائه شده توسط نویسندگان مطالعه حاضر بر مبنای روش تفاضل محدود، حل گردیده است. در روش حل ارائه شده بر مبنای متغیر تشابهی پیشنهادی، نیازی به در نظر گرفتن تغییرات سه متغیر مستقل دستگاه فیزیکی نمی‌باشد و به کمک یک متغیر مستقل تشابهی می‌توان همزمان تغییرات تمامی متغیر‌های مستقل را در نظر گرفت که از پیچیدگی حل بسیار کاسته می-شود. برای دیدن نتایج این روش حل، اثرات پارامتر‌های سیال و جریان بر میدان سرعت در لایه مرزی بررسی شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of non-Newtonian fluid flow over a linearly moving sheet at a transient state

نویسنده [English]

  • Mohammad Sadegh Valipour
چکیده [English]

Laminar flow of a non-Newtonian fluid over a moving flat solid boundary has been investigated. The power-law model was used for describing the non-Newtonian behavior of the fluid. The fluid was stationary at free stream and the motion of the solid boundary imposed the fluid to flow. Velocity of the solid boundary varied linearly along its length which is called stretching sheet. Also, the velocity of this boundary increased in time as a hyperbolic function. A new similarity variable for this type of transient motion of the stretching sheet based on the non-Newtonian behavior of the fluid has been proposed. This similarity variable transforms three independent variable (t,x,y) into an independent variable (η). By the use of this transformation, the governing partial differential equations of mass and momentum conservations were transformed into a single non-linear ordinary differential equation. Also, a numerical algorithm based on the finite difference method was proposed to solve the obtained non-linear differential equation. The proposed similarity variable reduced the complexity of the flow simulation and it represented all the three independent variables of the physical phenomenon at the same time. To see the results of the similarity transformation and the numeric algorithm, effects of the fluid and flow characteristics on the hydrodynamic behavior of the flow have been investigated.

کلیدواژه‌ها [English]

  • Stretching Sheet
  • un-steady flow
  • Non-Newtonian fluid
  • Similarity Transformation
  • numerical algorithm
 
[1]                Crane LJ. Flow past a stretching plate. Z Angew Math Phys 1970; 21:645–7.
[2]                McLeod B, Rajagopal K.R, On the non-uniqueness of the flow of a Navier-Stokes fluid due to stretching boundary. Arch Ration Mech Anal 1987; 98:385–493.
[3]                Dandapat. B. S, Gupta. A. S, Flow and heat transfer in a visco-elastic fluid over a stretching sheet, Int. J. Non-Linear Mech., 24 (1989) 215–219.
[4]                Chiam. T. C, Magnetohydrodynamic heat transfer over a non-isothermal stretching sheet, Acta Mech 1997; 122:169–79.
[5]                Ali. M. E, On the thermal boundary on a power-law stretched surface with suction or injection, Int. J. Heat and Fluid Flow, 16 (1995) 280–290.
[6]                Yurusoy M., Unsteady boundary layer flow of power-law fluid on stretching sheet surface, International Journal of Engineering Science 44 (2006) 325–332.
[7]                A.Acrivos, M. Shah, E.E. Petersen, Momentum and heat transfer in laminar boundary layer flows of non-Newtonian fluids past external surfaces, AIChE J. 6 (1960) 312–317.
[8]                W.R. Schowalter, The application of boundary-layer theory to power-law pseudoplastic fluids: similarity solutions, AIChE J. 6 (1960) 25–28.
[9]                M. SubhasAbel, P.G. Siddheshwar, N. Mahesha, Effects of thermal buoyancy and variable thermal conductivity on the MHD flow and heat transfer in a power-law fluid past a vertical stretching sheet in the presence of a non-uniform heat source, International Journal of Non-Linear Mechanics 44 (2009) 1—12.
[10]             Acharya, A., Singh, L.L., Dash, G.C., 1999. Heat and mass transfer over an accelerating surface with heat source in presence of suction and blowing. International Journal of Engineering Science 37, 189–211.
[11]             W.T. Cheng, C.N. Huang, Unsteady flow and heat transfer on an accelerating surface with blowing or suction in the absence and presence of a heat source or sink, Chemical Engineering Science 59 (2004) 771 – 780.
[12]             B.S. Dandapat, B. Santra, H. I. Andersson, Thermocapillarity in a liquid film on an unsteady stretching surface, International Journal of Heat and Mass Transfer 46 (2003) 3009–3015.
[13]             N. Bachok, A. Ishak, I. Pop, Unsteady boundary-layer flow and heat transfer of a nanofluid over a permeable stretching/shrinking sheet, International Journal of Heat and Mass Transfer 55 (2012) 2102–2109.
[14]             W. Ibrahim, B. Shanker, Unsteady MHD boundary-layer flow and heat transfer due to stretching sheet in the presence of heat source or sink, Computers & Fluids 70 (2012) 21–28.
[15]             K.V. Prasad, Dulal Pal, P.S. Datti, MHD power-law fluid flow and heat transfer over a non-isothermal stretching sheet, Commun Nonlinear Sci Numer Simulat 14 (2009) 2178–2189.