پیش‌بینی بار در بازار برق با استفاده از مدل هیبرید شبکه عصبی و الگوریتم بهبود یافته جستجوی گرانشی

نویسندگان

دانشگاه سمنان

چکیده

در این مقاله طراحی و بهینه‌سازی قوانین کنترل‌کننده فازی در سیتم قدرت چند ماشینه با استفاده از الگوریتم جستجوی هارمونی ارائه شده است. استفاده از کنترل‌کننده فازی PID یکی از روش‌های مناسب برای پایداری در سیستم-های نامطمئن و غیر خطی می‌باشد. رفتار کنترل‌کننده‌های فازی به اطلاعات طراحی شامل انتخاب توابع عضویت و قوانین کنترلی بستگی دارند. در روش-های طراحی سنتی، اطلاعات طراحی مبتنی بر تجربه افراد خبره است که از طریق آزمون سعی و خطا تعیین می‌گردد. بنابراین طراحی یک کنترل‌کننده مناسب زمان‌بر می‌باشد. بنابراین انتخاب بهینه قوانین فازی و یا شکل توابع عضویت مسأله بسیار مهمی می‌باشد. لذا انتخاب قوانین فازی بهینه و یا شکل توابع عضویت، بدون نیاز به تجربیات افراد خبره از اهمیت ویژه‌ای برخورداراست. از طرفی الگوریتم پیشنهادی هارمونی نیز در بررسی نتیجه عملکرد اجزا به دنبال هماهنگی مطلوب می‌باشد که در حل مسائل بهینه‌سازی به دنبال یافتن بهترین مسیر است تا بوسیله آن هزینه توابع محاسباتی را کاهش دهد. لذا کنترل‌کننده پیشنهادی در نقاط کار مختلف بر روی سیستم قدرت استاندارد سه ماشینه IEEE و ده ماشینه New-England مورد آزمایش قرار گرفته و نتایج آنالیز مقادیر ویژه سیستم و شبیه‌سازی با دیگر روش‌ها مقایسه گردیده است.

کلیدواژه‌ها


عنوان مقاله [English]

Short-term Load Forecasting in Power System by Hybrid Neural Network and Improved Gravitational Search Algorithm

چکیده [English]

This paper presents a design of fuzzy power system stabilizer (FPSS) using Harmony Search Algorithm (HSA) to damp low frequency oscillation in multi-machine power system where the parameters of proposed controller are optimized offline automatically by the proposed techniques. This newly proposed controller is more efficient because it cope with oscillations and different operating points. In this strategy the controller is tuned on line from the knowledge base and fuzzy interference. Two eigenvalue-based objective functions to enhance system damping of electromechanical modes are considered. This newly developed control strategy mixed the advantage of HSA and Fuzzy controller with simple structure while is easy to implement. The New England 10-unit 39-bus standard power system and 9 buses IEEE power system, under various system configurations and loading conditions, is employed to illustrate the performance of the proposed method. The effectiveness of proposed controller is compared with other techniques. Eigenvalue analysis and nonlinear simulation results show the effectiveness of the proposed controller.

کلیدواژه‌ها [English]

  • Power system stabilizer
  • Fuzzy Controller
  • Rule Base
  • Multi-machine system
  • Harmony Search Algorithm
 

[1]    Amjady, N. and Keynia, F., (2009), “Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm,” Energy, Vol. 34, No. 1, pp. 46-57.

[2]    Alfares, HK. and Nazeeruddin, M., (2002), “Electric load forecasting: literature survey and classification of methods,” Int J Syst Sci, vol. 33, no. 1, pp. 23–34.

[3]    Amjady, N.,” (2001), Short-term hourly load forecasting using time-series modeling with peak load estimation capability,” IEEE Trans on Power Syst, vol. 16, no. 3, pp. 498–505.

[4]    Bollerslev, T.,” (1986), Generalized autoregressive conditional heteroskedasticity,” J Econom, vol. 31, no. 3, pp. 307–27.

[5]    Amjady, N.,” (2007), Short-term Bus Load Forecasting of Power Systems by a New Hybrid Method,” IEEE Transactions on Power Systems, vol. 22, no. 1, pp. 333-341.

[6]    Al-Hamadi, H. M. and Soliman, S. A., (2005), “Long Term/Mid Term Electric Load Forecasting Based on Short-term Correlation and Annual Growth,” Electrical Power Systems Research, vol. 74, no. 3, pp: 353-361.

[7]    Chen, Y., Luh, PB., Guan, C., Zhao, Y., Michel, LD., Coolbeth, MA.,” (2010), “Short-term load forecasting: similar day-based wavelet neural networks,” IEEE Trans Power Syst, vol. 25, no. 1, pp. 322–30.

[8]    Shayanfar, H.A., Abedinia, O., Naderi, Mohammad. S., Ghasemi, A., (2011), “GSA to Tune Fuzzy Controller for Damping Power System Oscillation”, In: Proceedings of the international conference on artificial intelligence, Las Vegas, Nevada, pp: 713-719.

[9]    Amjady, N., Keynia, F., (2009), “Day-Ahead Price Forecasting of Electricity Markets by Mutual Information Technique and Cascaded Neuro-Evolutionary Algorithm,” IEEE Transaction on Power System, vol. 24, no. 1, pp. 12-20.

[10]                         Amjady, N., (2002), “Electric Power Systems: Advanced Forecasting Techniques and Optimal Generation Scheduling, Chapter 4”, CRC Press, Taylor & Francis.

[11]                         Kim, C., Yu, I., Song, Y.H., (2002), “Prediction of system marginal price of electricity using wavelet transform analysis”, Energy Conversion and Management, vol. 43, pp. 1839–1851.

[12]                         Lin, W.M., Hong J., Ming-Tang, T., (2010), “Electricity price forecasting using Enhanced Probability Neural Network, Energy Conversion and Management, vol. 51, pp. 2707–2714.

[13]                         Abedinia, O., Ghasemi, A., Bazyar, R., Yousefi, A., (2012), “Multi-objective GSA for solve the EED problem based fuzzy method”, 17th Electric Power Distribution Conference, Tehran, Iran.

[14]                         Bazyar, R., Ghasemi, A., Abedinia, O., Yousefi, A., (2011), “The economic distribution of power and CHPED heat using improved SPGSA,” International Power System Conference (PSC), Tehran, Iran.

[15]                         Rashedi, E., Nezamabadi-pour, H., Saryazdi, S., Farsangi, MM., (2007), “Allocation of static var compensator using gravitational search algorithm”, First Joint Congress on Fuzzy and Intelligent Systems, Ferdowsi University of Mashhad, pp. 29-31.

[16]                         Fan S, Chen L., (2006), “Short-term load forecasting based on an adaptive hybrid method. IEEE Trans Power Syst, vol. 21, no. 1, pp. 392–401.