مقایسه انتقال حرارت جابجایی اجباری تک‌فازی و دوفازی نانوسیالات در کانال متخلخل

نویسندگان

1 دانشگاه صنعتی شاهرود

2 دانشگاه فردوسی مشهد

چکیده

در این پژوهش، انتقال حرارت جابجایی اجباری نانوسیالات در کانال متخلخل دو بعدی با شرط عدم تعادل حرارتی بین فازها به صورت عددی حل و بررسی شده است. در این پژوهش، جریان توسعه یافته فرض شده و عدم تعادل حرارتی بین سیال و نانو ذره و جامد برقرار است و برای هر یک از فازها معادله انرژی جداگانه ای نوشته می شود. کسر حجمی نانوذرات دارای توزیع غیریکنواخت می باشد و بنابراین معادلات سه گانه انرژی و پیوستگی نانوذرات کوپل هستند و با هم حل می شوند. تأثیرات تغییرات پارامتر انتقال حرارت سیال/نانوذره و سیال/جسم جامد بر روی توزیع دمای جامد و سیال و نانوذره بررسی می شوند. همچنین معادله ای برای محاسبه شار حرارتی جذب شده توسط سیال، نانوذره و جسم جامد ارایه شده است. نتایج، کاهش دمای متوسط سیال را با افزایش پارامتر انتقال حرارت سیال/نانوذره و سیال/جسم جامد نشان دادند. با افزایش پارامتر انتقال حرارت سیال/نانوذره و سیال/جسم جامد، گرادیان دمای سیال نزدیک دیواره افزایش می یابد و در نتیجه شار حرارتی سیال افزایش می یابد. تأثیرات پارامتر انتقال حرارت سیال/نانوذره و سیال/جسم جامد، توزیع دمای جامد و شار حرارتی جامد و نانوذره مورد بحث و بررسی قرار گرفت.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Nield number on nanofluid forced convection heat transfer in porous channel: Under local thermal nonequilibrium condition

چکیده [English]

This paper is concerned with the effects of Nield number on heat transfer in a straight channel occupied by a porous medium. Investigation of force convective heat transfer of nanofluids in a porous channel has not been considered completely in the literature and this challenge is generally considered to be an open research topic that may require more study. The present work is an extension to our previous paper (see Maghrebi et al. [24]) such that three-equation energy model, for fluid/particle/solid phases, is employed in the porous channel. Moreover, one heat flux model is proposed. The fully-developed flow and steady Darcy-Brinkman equation is employed in the porous channel. The local thermal nonequlibrium model is assumed between fluid, particles and solid phases. It is assumed that the nanoparticles are distributed non-uniformly inside the channel. As a result, the volume fraction distribution equation is also coupled with other governing equations. The effects of Nield number and modified thermal capacity ratio on the heat transfer are completely studied.

کلیدواژه‌ها [English]

  • Nield Number
  • Heat flux
  • Non dimensional Temprature
  • Volume fraction distribution
 

[1] Choi S.U.S., (1995).  “Enhancing thermal conductivity of fluid   with nanoparticles”. Development and Applications of Non-Newtonian Flows, Vol. 66, pp. 99-105.

[2] Maiga S.E.B., Nguyen C.T., Galanis N., Roy G., (2004). “Heat transfer behaviors of nanofluid in a uniformly heated tube: Super lattices and Microstructures, Vol. 35, pp. 453-462.

[3] Zeinali Heris S., Etemad S. Gh., Nasr Esfahani M., (2006). “Experimental investigation of oxide nanofluid laminar forced flow convective heat transfer”. Int. Comm. Heat and Mass transfer, Vol. 33, pp. 529-535.

[4] Santra A.K., Sen S., Chkroborty M., (2009). “Study of heat transfer due to laminar flow of copper –water nanofluid through two isothermally heated parallel plate”. Int. J. of thermal science, Vol. 48, pp. 391-400.

[5] Kayhani M.H., Nazari M., Soltanzadeh H., Heyhat M.M., Kowsary F., (2012). “Experimental analysis of turbulent convective heat transfer and pressure drop of Al2O3/water nanofluid in horizontal tube”. Micro&Nano Letters, Vol. 7, PP. 223-227.                                                               

[6] Kayhani M.H., Soltanzadeh H., Heyhat M.M., Nazari M., Kowsary F., (2012). “Experimental study of convective heat transfer and pressure drop of TiO2/water nanofluid”. Int. Comm. Heat and Mass transfer, Vol. 39, pp. 456-462.

[7] Maghrebi M.J., Armaghani T., Talebi F., (2012). “Effects of nanoparticle volume fraction in hydrodynamic and thermal characteristics of forced plane jet”. Thermal Science Journal, Vol. 16, pp. 455-468.

[8] Behzadmehr A., Saffar-Avval M., Galanis N., (2007). “Prediction of turbulent forced convection of a nanofluid in tube with uniform heat flux using a two phase approach”, International Journal of Heat and Fluid Flow, Vol. 28, pp. 211-219.

[9] Armaghani T., Maghrebi M.J., Talebi F., (2009). “Effect of nanofluid volume concentration at laminar jet”. nanospain, Zaragoza, spain.

[10] Lee J., Mudawar I., (2007). “Assessment of the effectiveness of nanofluid for single-phase and two-phase heat transfer in micro-channels”. International Journal of Heat and Mass Transfer, Vol. 50, pp. 452-463.        

[11] Buongiorno J., (2006). “convection Transport in nanofluid”. ASME J.H Heat transfer, Vol. 128, pp. 240-250.    

[12] Heyhat M.M., kowsary F., (2010). “Effect of particle migration on flow and convctive heat transfer of nanofluids flowing through a circular pipe”. ASME. J. Heat transfer, Vol. 132, pp. 062401-9.                    

[13] Kim S.Y, Koo J.M, Kuznesov A.V., (2001). “effect of an isotropy in permeability and effective thermal conductively on thermal performance of an aluminum foam heat sink”.numerical heat transfer A, Vol. 40, pp. 21-36.

[14] Kim S.Y, Koo J.M, Kuznesov A.V., (2003). “optimization of ping-find heat sinks using an isotropic local thermal non equilibrium porous model model in a jet impinging channel”. numberical heat transfer A, Vol. 440, pp. 771-787.

[15] Abbassi H., Aghanajafi C., (2006). “evaluation of heat transfer augmentation in a nanofluid- cooled  microchannel heat sink”. J. fusion energy, Vol. 25, pp. 187-197.

[16] Tsai T., Chein R., (2006). “performance analysis of nanofluid-cooled micro channel heat sinks”. int. J. heat fluid flow, Vol. 28, pp. 1013-1026.

[17] Ghazvini M., Akhavan-behabadi M.A., Esmaeili M., (2009). “the effect of viscous dissipation on laminar nanofluid flow in a microchannel heat sink”. Ime. J. mech. eng. Sei Vol. 223, pp. 2697-2706.

[18] Ghazvini M., Shokouhmand H., (2009). “investigation of a nanofluid-cooled micro channel heat sink using fin and porous media approaches”. Energy Convers. Management, Vol. 50, pp. 2373- 2380.

[19] Salloum M., Mar H., Weeks D., Zhu L., (2008). “controlling nanoparticle delivery in magnetic nanoparticle hyper thermia for cancer treatment: experimental study in agarose gel” Int .J. hyper thermia, Vol. 24, pp. 337-345.

[20] Salloum M., Mar H., Zhu L., (2008). “aum-vivo experimental study of emperawe elevations in animal use Sue during managncue nanoparticle hyperthermia”. Int.J. hyperthermia, Vol. 24, pp. 589-597.

[21] Salloum M., Mar H., Zhu L., (2009). “enhancement in treatment planning for magnetic nanoparticle hyperhemia optimization of the heat absorption pattern”. Int. J. hypertherhermia, Vol. 25, pp. 309-321.

[22] Kuznetsov A.V., Nield D.A., (2010). “the onset of double-diffusive nanofluid convection in a layer of saturated porous media”. Transp. Porous Media, Vol. 83, pp. 401-4013.

[23] Chakama A., Gorla R.S.R., Ghodeswar K., (2010). “Non-similar solution for natural convection boundary layer flow over a sphere Embedded in a porous medium saturated with a nanofluid”. Trans. Porous. Med, Vol. 83, pp. 197-206.

[24]  Nield D.A., Kuznetsov A.V., (2009) “Thermal instability in a porous medium layer saturated by ananofluid”, Int. J. Heat and Mass Transf. Vol. 52, pp. 5796-5801.

[25] Tham L., Nazar R.,(2012). “Mixed convection flow about a solid sphere embedded in a porous medium filled with a nanofluid”, sains malaysiana. Vol. 41, pp.1643-1649.

[26] Rosca A.V., Rosca N.C.,Grosan T., Pop I.,(2012). “Non-Darcy mixed convection from a horizontal plate embedded in a nanofluid saturated porous medium”. Int. J. Comm. Heat and Mass Transf. Vol. 39, pp. 1080-1085.

[27] Sun Q., pop I., (2011). “Free convection in a triangle cavity filled with a porous medium saturated a nanofluid with flush mounted heater on the wall”, Int. J. Therm. Sci. Vol. 50, pp. 2141-2153.

[28] Rashad A.M., Chamkha A.J., Abdou M.M.M.,(2013). “Mixed convection flow of non-newtonian fluid from vertical surface saturated in a porous medium filled with a nanofluid”, J. of App. Fluid Mech. Vol. 6, pp.301-309.

[29] Chamkha A.J., Abbasbandy S., Rashad A.M., Vajravelu K.(2013). “Radiation effects on mixed convection about a cone embedded in a porous medium filled with nanofluid”, Meccanica. Vol.48, pp.275-285.

[30] Cheng Ching-yang, (2012).“Free convection of non-newtonian nanofluids about a vertical truncated cone in a porous medium”, Int. J. Comm. Heat and Mass Transf. Vol. 39, pp. 1348-1353.

[31] Nield D.A., Kuznetsov A.V., Ming Xiong,(2003). “Thermally developing forced convection in a porous medium: parallel plate channel with walls atuniform temperature, with axial conduction and viscous dissipation effects”, Int. J. Heat and Mass Transf. Vol. 46, pp. 643-651.

[32] He J.H., (1998). “An approximate solution technique and a perturbation technique for nonlinear problems”, comm. in nonlinear sci. and num. simulation, Vol. 3, pp.92-97.

[33] He J.H., “Approximate analytical solution for speegage flow with fractional derivatives in porous media”, comp. meth. In app. Mech. And eng. Vol. 167, 1998,pp. 57-58.

[34] Goodarzian H., Armaghani T., Okazi M., (2012). “study of nonlinear Kdv type equations via homotopy perturbation method and variational iteration method”, Int. J. of Phys. Sci., Vol 7, pp. 234-240.

[35] Patankar S.V., (1980). “Numerical Heat Transfer and Fluid Flow”. Hemisphere, New York.

[36] Bejan A., (2003). “Convective heat transfer”, third ed. John Wiley & Sons, Hoboken.