مدل‌سازی تردد ناوگان اتوبوسرانی شهری بر اساس داده‌های موقعیت مکانی موردکاوی: خطوط اتوبوسرانی شهری تهران

نویسندگان

1 تربیت مدرس

2 دانشگاه تهران

چکیده

حمل و نقل عمومی یکی از شاخصهای توسعهیافتگی و از جمله مهمترین جوانب در مدیریت کلانشهرهاست. خطوط اتوبوسرانی از جمله پرکاربردترین و شناختهشدهترین شیوههای حمل و نقل عمومی محسوب میشوند. امروزه سامانههای فناوری اطلاعات و ارتباطات به منظور ثبت اطلاعات برخط از وضعیت ناوگان و با اهداف متنوعی همچون اطلاعرسانی، پیش‌بینی زمان سفر، برنامهریزی و بهبود عملکرد در خدمت حوزه مدیریت شهری می‌باشند. تحلیل حجم بالای داده‌های ثبت شده از سامانه‌های موقعیتیاب جهانی و موقعیتیاب خودکار نیازمند بکارگیری مدل‌هایی کارا است؛ به نحوی که اطلاعات حاصل بتوانند در مدیریت، برنامهریزی و بهبود عملکرد خطوط اتوبوس‌رانی مورد استفاده قرار گیرند. در این تحقیق، مدل‌سازی تردد ناوگان اتوبوسرانی شهری با استفاده از داده‌های موقعیت مکانی و به منظور تخمین زمان سفر و ارزیابی شاخص های کلیدی عملکردی ارائه شده است. بر اساس مدل پیشنهادی امکان تخصیص مناسب ناوگان در ساعات مختلف شبانهروز برای مسیرهای اتوبوسرانی فراهم شده و امکان برنامه‌ریزی جامع به منظور مدیریت ناوگان فراهم شده است. کاربردهای عمده مدل پیشنهادی عبارتند از: تخصیص بهینه اتوبوسها به خطوط، زمانبندی موثر تردد ناوگان در خطوط، اطلاع‌رسانی دقیق به شهروندان و نهایتا مدیریت موثر تردد ناوگان اتوبوسرانی.

کلیدواژه‌ها


عنوان مقاله [English]

Bus simulation modeling with global positioning data Case study: Tehran bus system

چکیده [English]

Bus simulation modeling with global positioning data Case study: Tehran bus system

کلیدواژه‌ها [English]

  • Bus transit route
  • trip time
  • Simulation
  • global positioning data

1-      

[1] Cheung, C., et al., Models for safety analysis of road surface transit. Transportation Research Record: Journal of the Transportation Research Board, 2008. 2063(1): p. 168-175.

[2] Weigang, L., et al. Algorithms for estimating bus arrival times using GPS data. in Intelligent Transportation Systems, 2002. Proceedings. The IEEE 5th International Conference on. 2002. IEEE.

[3] Tirachini, A., Estimation of travel time and the benefits of upgrading the fare payment technology in urban bus services. Transportation Research Part C: Emerging Technologies, 2011.

[4] Abdelfattah, A.M. and A.M. Khan, Models for predicting bus delays. Transportation Research Record: Journal of the Transportation Research Board, 1998. 1623(1): p. 8-15.

[5] Chien, S.I.-J., Y. Ding, and C. Wei, Dynamic bus arrival time prediction with artificial neural networks. Journal of Transportation Engineering, 2002. 128(5): p. 429-438.

[6] Strathman, J.G., et al., Evaluation of transit operations: data applications of Tri-Met's automated Bus Dispatching System. Transportation, 2002. 29(3): p. 321-345.

[7] Tétreault, P.R. and A.M. El-Geneidy, Estimating bus run times for new limited-stop service using archived AVL and APC data. Transportation Research Part A: Policy and Practice, 2010. 44(6): p. 390-402.

[8] El-Geneidy, A.M., J. Horning, and K.J. Krizek, Analyzing transit service reliability using detailed data from automatic vehicular locator systems. Journal of Advanced Transportation, 2011. 45(1): p. 66-79.

[9] Strathman, J.G., et al., Automated bus dispatching, operations control, and service reliability: Baseline analysis. Transportation Research Record: Journal of the Transportation Research Board, 1999. 1666(1): p. 28-36.

[10] Strathman, J.G., et al., Service reliability impacts of computer-aided dispatching and automatic vehicle location technology: A Tri-Met case study. Transportation Quarterly, 2000. 54(3): p. 85-102.

[11] Bates, J., et al., The valuation of reliability for personal travel. Transportation Research Part E: Logistics and Transportation Review, 2001. 37(2): p. 191-229.

[12] Chen, X., et al., Analyzing urban bus service reliability at the stop, route, and network levels. Transportation research part A: policy and practice, 2009. 43(8): p. 722-734.

[13] Mazloumi, E., et al., Exploring the Value of Traffic Flow Data in Bus Travel Time Prediction. Journal of Transportation Engineering, 2011. 138(4): p. 436-446.

[14] Tirachini, A. and D.A. Hensher, Bus congestion, optimal infrastructure investment and the choice of a fare collection system in dedicated bus corridors. Transportation Research Part B: Methodological, 2011. 45(5): p. 828-844.

[15] Patnaik, J., S. Chien, and A. Bladikas, Estimation of bus arrival times using APC data. Journal of public transportation, 2004. 7(1): p. 1-20.

[16] Kalaputapu, R. and M. Demetsky. Modeling Bus Transit Schedule Deviations Using Automatic Vehicle Location Data and Artificial Neural Networks. in at 74th TRB Annual Meeting, Washington, DC. 1995.

[17] Kalaputapu, R. and M.J. Demetsky, Modeling schedule deviations of buses using automatic vehicle-location data and artificial neural networks. Transportation research record, 1995(1497): p. 44-52.

[18] Jeong, R. and R. Rilett. Bus arrival time prediction using artificial neural network model. in Intelligent Transportation Systems, 2004. Proceedings. The 7th International IEEE Conference on. 2004. IEEE.

[19] Park, T., S. Lee, and Y.-J. Moon, Real time estimation of bus arrival time under mobile environment, in Computational Science and Its Applications–ICCSA 2004. 2004, Springer. p. 1088-1096.

[20] Shalaby, A. and A. Farhan, Prediction model of bus arrival and departure times using AVL and APC data. Journal of Public Transportation, 2004. 7(1): p. 41-62.

[21] Chen, M., et al., A Dynamic Bus‐Arrival Time Prediction Model Based on APC Data. Computer‐Aided Civil and Infrastructure Engineering, 2004. 19(5): p. 364-376.

[22] Dailey, D., et al., Transit vehicle arrival prediction: Algorithm and large-scale implementation. Transportation Research Record: Journal of the Transportation Research Board, 2001. 1771(1): p. 46-51.

[23] Chen, M., X. Liu, and J. Xia, Dynamic prediction method with schedule recovery impact for bus arrival time. Transportation Research Record: Journal of the Transportation Research Board, 2005. 1923(1): p. 208-217.

[24] Lin, W.-H. and J. Zeng, Experimental study of real-time bus arrival time prediction with GPS data. Transportation Research Record: Journal of the Transportation Research Board, 1999. 1666(1): p. 101-109.

[25] Lin, W.H. and R.L. Bertini, Modeling schedule recovery processes in transit operations for bus arrival time prediction. Journal of advanced transportation, 2004. 38(3): p. 347-365.

[26] Sun, D., et al., Predicting bus arrival time on the basis of global positioning system data. Transportation Research Record: Journal of the Transportation Research Board, 2007. 2034(1): p. 62-72.

[27] Mishalani, R.G., M.R. McCord, and S. Forman, Schedule-based and autoregressive bus running time modeling in the presence of driver-bus heterogeneity, in Computer-aided Systems in Public Transport. 2008, Springer. p. 301-317.