تأثیرات پارامتر انتقال حرارت سیال/نانوذره و سیال/جسم جامد بر روی انتقال حرارت جابجایی اجباری نانوسیالات در کانال متخلخل: با شرط عدم تعادل حرارتی

نویسندگان

1 دانشگاه صنعتی شاهرود

2 دانشگاه فردوسی مشهد

چکیده

در این پژوهش، انتقال حرارت جابجایی اجباری نانوسیال در کانال متخلخل دو بعدی با شار حرارتی ثابت مورد بررسی قرار گرفته است. از روشهای تکفازی و دوفازی برای مدلسازی انتقال حرارت نانوسیالات استفاده و نتایج عددی حاصل از این دو روش با هم مقایسه شده است. تأثیرات مهاجرت نانوذرات بر روی انتقال حرارت جابجایی اجباری نیز مورد بحث و بررسی قرار گرفته است. جریان سیال کاملا توسعه یافته فرض شده و تعادل حرارتی بین نانوسیال و فاز جامد برقرار است. در حالت کلی،کسر حجمی نانوذرات در کانال متخلخل دارای توزیع غیریکنواخت بوده و معادلات حاکم بر مساله مستقل از یکدیگر نمی‌باشند.معادلات حاکم به روش عددی تفاضل محدود حل شده و برای حل معادله دارسی برینکمن فورچهیمر در حالت توسعه‌یافته از روش آشفتگی هموتوپی استفاده شده است. نتایج حل عددی، افزایش عدد ناسلت محلی را با کاهش عدد لوئیس نشان داده و روند مشابهی نیز برای عدد اشمیت مشاهده شده است. ضمنا تأثیرات عدد لوئیس، عدد اشمیت و نسبت نفوذ اصلاح شده بر روی کسر حجمی نانوذرات مورد بحث قرارمی‌گیرد. انتقال حرارت محاسبه شده از روش تکفازی و دوفازی نیز مقایسه شده است

کلیدواژه‌ها


عنوان مقاله [English]

Comparison betweenSingle and Two Phase Nanofluid Convective Heat Transfer in a Porous Channel

چکیده [English]

In this paper, the nanofluid forced convection heat transfer in the case of single and two phase approachs is studied.The fully-developed flow and steady Darcy-Brinkman-Forchheimer equation is employed in porous channel and is solved with homotopy perturbation method. The thermal equilibrium model is assumed between nanofluid and solid phases. It is assumed that the nanoparticles are distributed non-uniformly inside the channel.As a result, the volume fraction distribution equation is also coupled with governing equations. It is observed that as the Schmidt number is increased, the wall temperature gradient is decreased and as a consequence the local Nusselt number is decreased. The effects of Lewis number, Schmidt number and modified diffusivity ratio on the volume fraction distribution are also studied and discussed. Heat transfer of single and two phase approaches are also compared.

کلیدواژه‌ها [English]

  • Single phase and two phase approachs
  • Nanofluid
  • Brownian motion
  • Thermophoresis
 

[1] Choi S.U.S., (1995).  “Enhancing thermal conductivity of fluid   with nanoparticles”. Development and Applications of Non-Newtonian Flows, Vol. 66, pp. 99-105.

[2] Maiga S.E.B., Nguyen C.T., Galanis N., Roy G., (2004). “Heat transfer behaviors of nanofluid in a uniformly heated tube: Super lattices and Microstructures, Vol. 35, pp. 453-462.

[3] Zeinali Heris S., Etemad S. Gh., Nasr Esfahani M., (2006). “Experimental investigation of oxide nanofluid laminar forced flow convective heat transfer”. Int. Comm. Heat Mass Trans., Vol. 33, pp. 529-535.

[4] Santra A.K., Sen S., Chkroborty M., (2009). “Study of heat transfer due to laminar flow of copper –water nanofluid through two isothermally heated parallel plate”. Int. J. of Thermal Sci., Vol. 48, pp. 391-400.

[5] Kayhani M.H., Nazari M., Soltanzadeh H., Heyhat M.M., Kowsary F., (2012). “Experimental analysis of turbulent convective heat transfer and pressure drop of Al2O3/water nanofluid in horizontal tube”. Micro&Nano Letters, Vol. 7, PP. 223-227.                                                               

[6] Kayhani M.H., Soltanzadeh H., Heyhat M.M., Nazari M., Kowsary F., (2012). “Experimental study of convective heat transfer and pressure drop of TiO2/water nanofluid”. Int. Comm. Heat Mass Trans., Vol. 39, pp. 456-462.

[7] Maghrebi M.J., Armaghani T., Talebi F., (2012). “Effects of nanoparticle volume fraction in hydrodynamic and thermal characteristics of forced plane jet”. Thermal Sci. J., Vol. 16, pp. 455-468.

[8] Behzadmehr A., Saffar-Avval M., Galanis N., (2007). “Prediction of turbulent forced convection of a nanofluid in tube with uniform heat flux using a two phase approach”, int. J. Heat Fluid Flow, Vol. 28, pp. 211-219.

[9] Armaghani T., Maghrebi M.J., Talebi F., (2009). “Effect of nanofluid volume concentration at laminar jet”. nanospain, Zaragoza, spain.

[10] Lee J., Mudawar I., (2007). “Assessment of the effectiveness of nanofluid for single-phase and two-phase heat transfer in micro-channels”. Int. J. Heat Mass Trans., Vol. 50, pp. 452-463.        

[11] Buongiorno J., (2006). “convection Transport in nanofluid”. ASME J. Heat Trans. Vol. 128, pp. 240-250.    

[12] Heyhat M.M., kowsary F., (2010). “Effect of particle migration on flow and convctive heat transfer of nanofluids flowing through a circular pipe”. ASME. J. Heat Trans., Vol. 132, pp. 062401-9.                     

[13] Kim S.Y, Koo J.M, Kuznesov A.V., (2001). “effect of an isotropy in permeability and effective thermal conductively on thermal performance of an aluminum foam heat sink”. Numerical Heat Trans. A, Vol. 40, pp. 21-36.

[14] Kim S.Y, Koo J.M, Kuznesov A.V., (2003). “optimization of ping-find heat sinks using an isotropic local thermal non equilibrium porous model model in a jet impinging channel”. Numerical heat Trans. A, Vol. 440, pp. 771-787.

[15] Abbassi H., Aghanajafi C., (2006). “evaluation of heat transfer augmentation in a nanofluid- cooled  microchannel heat sink”. J. Fusion Energy, Vol. 25, pp. 187-197.

[16] Tsai T., Chein R., (2006). “performance analysis of nanofluid-cooled micro channel heat sinks”. Int. J. Heat Fluid Flow, Vol. 28, pp. 1013-1026.

[17] Ghazvini M., Akhavan-behabadi M.A., Esmaeili M., (2009). “the effect of viscous dissipation on laminar nanofluid flow in a microchannel heat sink”. Ime. J. mech. eng. Sei Vol. 223, pp. 2697-2706.

[18] Ghazvini M., Shokouhmand H., (2009). “investigation of a nanofluid-cooled micro channel heat sink using fin and porous media approaches”. Energy Convers. Management, Vol. 50, pp. 2373- 2380.

[19] Salloum M., Mar H., Weeks D., Zhu L., (2008). “controlling nanoparticle delivery in magnetic nanoparticle hyper thermia for cancer treatment: experimental study in agarose gel” Int .J. Hyperthermia, Vol. 24, pp. 337-345.

[20] Salloum M., Mar H., Zhu L., (2008). “aum-vivo experimental study of emperawe elevations in animal use Sue during managncue nanoparticle hyperthermia”. Int. J. Hyperthermia, Vol. 24, pp. 589-597.

[21] Salloum M., Mar H., Zhu L., (2009). “enhancement in treatment planning for magnetic nanoparticle hyperhemia optimization of the heat absorption pattern”. Int. J. Hypertherhermia, Vol. 25, pp. 309-321.

 [22] Maghrebi M.J., Nazari M., Armaghani T., (2012). “Forced     Convection Heat Transfer of Nanofluids in a Porous Channel, Transp. Porous Media” Vol. 93, pp. 401-4013.

[23] kuznetsov, A.V.,Niled D.A., (2010) “Effect of local thermal non-equilibrium on the onset of convection in a porous medium  layer saturated by a nanofluid.” Transp. Porous Media., Vol. 83, pp. 425-436.

[24] Armaghani, T., Maghrebi, M.J., Chamkha, A.J., Nazari, M., (2014) “Effects of nanoparticles migration on Forced Convection Heat Transfer in a Non-Thermal Equilibrium Porous Channel,” J. Of Nanofluids, Vol. 3, pp. 51-59.

[25] Vadasz, P., (2006) Heat conduction in nanofluid suspension. ASME J. Heat Trans. vol. 128, pp. 465-477.

[26] Niled, D.A., (1998) Effects of local thermal nonequilibrium in steady convective processes in a saturated porous medium: Forced convection in a channel. J. Porous Media. Vol. 1, pp.181-189. 

[27] Patankar S.V., (1980). “Numerical Heat Transfer and Fluid Flow”. Hemisphere, New York.

[28] Nield, D.A., Kuznetsov, A.V., (2014). “Forced convection in a parallel-plate channel occupied by a nanofluid or a porous medium saturated by a nanofluid”, Int. J. Heat Mass Trans., Vol. 70, pp. 430-433.

[29] Bejan A., (2003). “Convective heat transfer”, third ed. John Wiley & Sons, Hoboken.