[1] T. DebRoy and S. Kou “Heat Flow in Welding”, 9th Edition, Chapter 3, Welding Handbook, vol. 1, American Welding Society, pp. 87-113, (2001).
[2] K. Easterling “Introduction to the Physical Metallurgy of Welding”, 2nd Edition, Butterworth-Heinemann, Oxford, (1992).
[3] S. Kou “Welding Metallurgy”, 2nd Edition, John Wiley & Sons, Hoboken, New Jersey, (2003).
[4] W. H. Giedt, X. C. Wei, and S. R. Wei, “Effect of surface convection on stationary GTA weld zone temperatures”, Welding Journal, vol. 63, no. 12, pp. 376s–383s, (1984).
[5] W. E. Lukens and R. A. Morris, “Infrared temperature sensing of cooling rates for arc welding control”, Welding Journal, vol. 61, no. 1, pp. 27–33, (1982).
[6] R. Kovacevic, Y. M. Zhang, and S. Ruan, “Sensing and control of weld pool geometry for automated GTA welding”, Journal of Engineering for Industry, vol. 117, no. 2, pp. 210–222, (1995).
[7] Y. F. Hsu, B. Rubinsky, “Two-dimensional heat transfer study on the keyhole plasma arc welding process”, Int. J. Heat Mass Trans. 31, 1409–1421, (1988).
[8] R. G. Keanini, B. Rubinsky, “Plasma arc welding under normal and zero gravity”, Weld. J. 69, 41–50, (1990).
[9] A. Nehad, “Enthalpy technique for solution of stefan problems: to the keyhole Plasma arc process involving moving heat source”, Int. Comm. Heat Mass Transfer, Vol. 22, No. 6, pp. 779-790, (1995).
[10] M. H. Sadd, J. E. Didlake, “Non- Fourier Melting of a same infinite solid”, J. Heat Transfer 2 vol 81, PP. 25-28, (2001).
[11] F. M. Jiang, “Non- Fourier heat conduction phenomena in porous material heated by microsecond laser pulse”, Taylor & Francis, vol 6, PP. 331-346, (2002).
[12] BY C. S. WU, H. G. WANG, AND Y. M. ZHANG, “A New Heat Source Model for Keyhole Plasma Arc Welding in FEM Analysis of the Temperature Profile”, Welding Journal, (2006).
[13] T.Q. Li, C.S. Wu, Y.H. Feng, L.C. Zheng, “Modeling of the thermal fluid flow and keyhole shape in stationary plasma arc welding”, International Journal of Heat and Fluid Flow 34, 117–125, (2012).
[14] W. Zhang and G. G. Roy, J. W. Elmer, T. DebRoya, “Modeling of heat transfer and fluid flow during gas tungsten arc spot welding of low carbon steel”, Journal of Applied Physics, Volume 93, Number 5, (2003).
[15] BY R. RAI, T. A. PALMER, J. W. ELMER, AND T. DEBROY, “Heat Transfer and Fluid Flow during Electron Beam Welding of 304L Stainless Steel Alloy”, Welding Journal, VOL. 88, (2009).
[16] V. R. Voller and C. Prakash, “A fixed grid numerical modelling methodology for convection-diffusion mushy region phasechange problems”, International Journal of Heat and Mass Transfer 30: 1709–1720, (1987).
[17] A. D. Brent, V. R. Voller, and K. J. Reid, “Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal”, Numerical Heat Transfer 13: 297–318, (1988).
[18] V.R. Voller, C.R. Swaminathan, B.G. Thomas, “Fixed grid techniques for phase change problems: a review”, Int. J. Numer. Methods Eng. 30, 875–898, (1990).
[19] C.S. Wu, “Welding Thermal Processes and Weld Pool Behaviors”, 1st ed. CRC Press Taylor & Francis Boca Raton, (2010).
[20] K. Mundra, T. DebRoy, and K. M. Kelkar, Numer. Heat Transfer, Part A 29, 115, (1996).
[21] C. Cattaneo, “A Form of conduction Equation Which Eliminates the Paradox of Instantaneous Propagation”, Compt.Rend.,vol.247,PP. 431-442, (1986).
[22] P. Vernotte, “Paradox in the Continuous Theory of Heat Equation”, Compt.Rend.,vol.246,PP. 3154-3159, (1986).
[23] H. K. VERSTEEG and W. MALALASEKERA, “An introduction to computational fluid dynamics: The finite volume method”, John Wiley & Sons, New York, (1995).
[24] N. Ashcroft, N. David, “Solid State Physics”, PP: 10, (1975).