برنامه ریزی توسعه پویای شبکه های توزیع در حضور منابع تولید پراکنده با استفاده از یک الگوریتم بهینه سازی جدید دو سطحی

نویسندگان

دانشگاه سمنان

چکیده

در این مقاله یک مدل پویا (دینامیک) جهت طرح برنامه ریزی توسعه سالانه شبکه های توزیع با در نظر گرفتن امکان استفاده از فناوری های تولید پراکنده انرژی الکتریکی ارائه گردیده است. مدل پیشنهادی، مکان، ظرفیت و زمان مناسب استفاده از فناوری های تولید پراکنده و همچنین برنامه زمانی افزایش ظرفیت خطوط شبکه را مشخص می کند. تابع هدف مدل پیشنهادی شامل مجموع هزینه های سرمایه گذاری و بهره برداری در طول یک دوره زمانی مشخص می باشد. جهت حل مساله معرفی شده از یک روش حل دو سطحی حاصل از ترکیب الگوریتم باینری و تقویت شده رقابت استعماری و الگوریتم بهبود یافته اجتماع ذرات استفاده گردیده است. بطوریکه در سطح اول این روش حل، هزینه های سرمایه گذاری طرح به کمک الگوریتم رقابت استعماری باینری و تقویت شده بهینه گردیده و در سطح دوم، الگوریتم بهبود یافته اجتماع ذرات، هزینه های بهره برداری را بهینه می سازد. در نهایت، مدل پیشنهادی بر روی یک شبکه توزیع نمونه پیاده سازی شده و نتایج حاصل از آن از طریق مقایسه با نتایج دیگر روشهای حل دو سطحی مورد تحلیل قرار گرفته است.

کلیدواژه‌ها


عنوان مقاله [English]

Dynamic expansion planning of power distribution grids with distributed generation resources using a new two-level optimization algorithm

نویسندگان [English]

  • Masoud Ahmadigorji
  • Nima Amjady
چکیده [English]

This paper presents a comprehensive model for dynamic expansion planning of distribution grids (DDGEP) considering distributed generation technologies. The proposed model determines the optimal location, capacity and dynamics (i.e. timing) of DG investment as well as optimal time schedule of reinforcement of distribution feeders. The objective function of this model encompasses both investment and operation costs of distribution grids and DG units along a specified planning horizon. To solve the suggested model, a new two-level solution method composed of Binary Enhanced Imperialist Competition Algorithm (BEICA) and Improved Particle Swarm Optimization (IPSO) is introduced. BEICA optimizes the location, capacity and timing of DG investment and also timing of existing feeders' reinforcement while IPSO optimizes the operation point of distributed generator-integrated distribution system. In order to demonstrate the effectiveness of proposed two-level solution approach (BEICA+IPSO), it is applied on a radial distribution test system and the obtained results are compared with several other solution methods.

کلیدواژه‌ها [English]

  • Distribution grid
  • Dynamic expansion planning
  • Distributed generation
  • Imperialist competitive algorithm
  • Particle swarm optimization
[1]
Masoud Esmaili , Esmail Chaktan Firozjaee, Heidar Ali Shayanfar ,
Optimal placement of distributed
generations considering voltage stability and power losses with observing voltage
-
related
constraints
,
Appl
Energy
,
v
ol.
1
13
, pp.
1252
-
1260
, 2014.
[2]
AlRashidi MR, AlHajri MF
,
Optimal planning of multiple distributed generation sources in distribution
networks: a new approach
ˮ
,
Energy Convers Manage
,vol.
52
, pp.
3301
330
8
, 2011.
[3]
J.A.
Laghari
H.
Mokhlis
,
A.H.A.
Bakar
,
M.
Karimi
,
A new islanding detection technique for multiple mini
hydro based on rate of change of reactive power and load connecting strategy
ˮ
,
Energy Convers Manage
, vol.
76
, pp.215
-
224, 2013
[4]
M. Sedghi, M. Aliakbar
-
Golkar, M.
-
R. Haghifam
,
Distribution network
expansion considering distributed
generation and storage units using modified PSO algorithm
ˮ
,
Elect Power
Energy Syst.
, vol. 52, pp.
221
-
230.
2013.
[5] I. Ziari, G. Ledwich, A. Ghosh, G. Platt,
Integrated distribution systems planning to improve reliabil
ity
under load growth
ˮ,
IEEE Trans. Power Syst, vol.
27
, no.
2
, pp.
757
765
, 2012.
[6]
Ehsan Naderi, Hossein Seifi, Mohammad Sadegh Sepasian
, “
A
dynamic approach for distribution system
considering distributed generation
ˮ
,
IEEE Trans
.
Power Del
,
vol.
27
,
no. 3, pp.1313
-
1322, 2012.
[7] Wu Ouyang, Haozhong Zheng, Xiubin Zang, Liangzhong Yao
,
Distribution network planning method
considering distributed generation for peak cutting
ˮ,
Energy Convers Manage
, vol.
52
, pp.
221
-
230
, 2013
.
[8] Mohsen Gitizadeh, A
li Azizi Vahed, Jamshid Aghaei
, “
Multistage distribution system expansion planning
considering distributed generation using hybrid evolutionary algorithms
ˮ,
Appl Energy
, vol.
101
, pp.
655
-
666
,
2013.
[9]
Falaghi H, Singh C, Haghifam M
-
R, Ramezani M.
, “
DG
integrated multistage distribution system expansion
planning
ˮ,
Electr Power Energy Syst
,
v
ol.
33
, pp.
1489
1497
, 2011.
[10]
Alireza Soroudi, Mehdi Ehsan, Hamidreza Zareipour,
A
practical eco
-
environmental distribution network
planning model including fuel cells and non
-
renewable distributed energy resources
ˮ,
Renewable Energy;
vol.
36
, pp.
179
-
188
, 2011.
[11]
Abdullah S. Bin Humayd, Kankar Bhattacharya
, “
Comprehensive
multi
-
yea
r distribution system planning
using back
-
propagation approach
ˮ,
IET Gener. Transm.
Distrib., vol.
7
, no.
12
, pp.
1415
1425
, 2013.
[12]
Atashpaz
-
Gargari
, E
., Lucas,C.
, “
Imperialist Competitive algorithm: an algorithm for optimization inspired
by
imperialistic competition
ˮ,
IEEE Congress on Evolutionary Computation
,
CEC 2007
, pp
. 4661
-
4667
, 2007.
[13]
Jazebi
,
S.
,
Haji
,
M.M.
,
Naghizadeh, R.A.
, “
Distribution Network Reconfiguration in the Presence of
Harmonic Loads: Optimization Techniques and Analysis
ˮ
,
IEEE Trans. Smart Grid.
vol.
5,
no.
4,
pp.1929
-
1937,
2014.
[14]
Safari, M.
,
Sarvi, M.
, “
Optimal load sharing strategy for a wind/diesel/battery hybrid power system b
ased
on
imperialist
competitive
neural network
algorithm
ˮ,
IET Renew. Power.
Gener., vol.
8
, no.
8
, pp.
937
-
946.
2013.
[
15]
Kennedy, J. and Eberhart, R.
,
“Particle Swarm Optimization”, Proc IEEE Int Conf Neural Networks
,
Perth,
Australia
, 1995.
[16] M.
Gómez
-
González
,
A. López,
F. Jurado
, “
Hybrid discrete PSO and OPF approach for optimization of
biomass fueled micro
-
scale energy system
ˮ
,
Energy Convers Manage
,
vol.
65
, pp.
539
-
545
, 2013.
[17] Nima Amjady, Hassan Rezai soleymanpour
,
Daily hydrothermal
generation scheduling by a new modified
adaptive swarm optimization technique
ˮ,
Electric Power Syst Res
., vol.
80
, no.
6
, pp. 7
23
-
732
, 2010.
[18]
Amjady, N., Fatemi, H., Zareipour, H. Solution of Optimal Power Flow Subject to Security Constraints by
a New
Improved Bacterial Foraging Method. IEEE Trans. Power Syst
.,
vol.
27
, no. 3, pp.
1311
-
1323
, 2012
.
[
19
]
M.Chis, M.M.A.Salama, S.
Jayaram, “Capacitor placement in distribution systems using heuristic search
strategies”,
IET Gener. Transm. Distrib.,
vol. 144, no.3, pp.225
230, 1997
.
 
[
20
] Bh
attacharya, A. Chattopadhyay, P
.K
., “Biogeography
-
Based Optimization for Different Economic Load
Dispatch Problems
ˮ,
IEEE Trans Power Syst
,
vol.
25
, no.
2
,
pp.
1046
-
1077
, 2010.
[
2
1
]
Youcef Amrane, Mohamed Boudour,
Ahmed Amine Ladjici,
Ali Elmaouhab
., “
Optimal VAR control for
real loss minimization using differential evolution algorithm
ˮ
,
Int.
J
of Elect & Energy Syst.,
vol.
66
, pp.
262
-
271
,
2015
.
[
2
2
] Y. Mohamed Shuaib, M. Surya Kalavathi, C. Christober Asir Raja
n
,
Optimal capacitor placement in
radial distribution system using Gravitational Search Algorithm
ˮ
,
Electrical Power and Energy Systems, vol. 64,
pp. 384
-
397, 2015.
[
2
3
]
Ping Zhang, Xiaoyou Shan, Wu Gu
.
, “
A
Modified harmony search algorithm for 0
-
1 knapsack problems
ˮ,
Proceedings
of 3
rd
Int
conf on digital manufacturing and automation (ICDMA),
GuiLin
,
p
p
. 85
-
88
, 2012.
[
24
] J. Kennedy and R. C. Eberhart.
, “
A discrete binary version of the particle swarm
algorithm
ˮ
,
IEEE Int
Conf Syst, Man, Cybern, Piscataway,
pp. 4104
4108,
1997