کاربرد سیستم تطبیقی ANFIS در تخمین پتانسیل تحکیم خاک‌های رسی

نویسندگان

دانشگاه شهید چمران اهواز

چکیده

احداث سازه‌ها بر روی خاک‌های رسی اشباع باعث به هم فشردگی ذرات خاک شده که پدیده تحکیم و نشست خاک را به همراه دارد. یکی از روش‌های محاسبه نشست، استفاده از شاخص فشردگی است که از طریق آزمایش تحکیم بدست می‌آید. تعیین این ضریب از طریق آزمایش تحکیم بسیار وقت‌گیر و پرهزینه بوده به طوری‌که از گذشته تاکنون روابط تجربی زیادی بیان شده است تا بوسیله آنها بتوان شاخص فشردگی را پیش بینی نمود. در این تحقیق داده‌های مهم و با ارزشی از نتایج آزمایش تحکیم در نقاط مختلف استان خوزستان جمع‌آوری گردید و با استفاده از داده‌های یاد شده مقادیر شاخص فشردگی تعیین شد. سپس با استفاده از تکنیک تطبیق شبکه عصبی مصنوعی و منطق فازی (ANFIS) نتایج، مورد آزمون و ارزیابی قرار گرفت. همچنین در این تحقیق، نتایج کسب شده از سیستم تطبیقی ANFIS با نتایج حاصل از فرمول‌های تجربی در ارتباط با داده‌های واقعی مورد مقایسه قرار گرفت. در بهترین حالات خطای برخی از روابط تجربی در منطقه مورد مطالعه در حدود 20 درصد محاسبه شد. این در حالی است که اکثر روابط تجربی در منطقه مورد مطالعه دارای دقت قابل قبولی نستند. نتایج نشان داد که سیستم تطبیقی ANFIS شاخص فشردگی که یکی از پارامترهای مهم و اساسی در برآورد تحکیم خاک های رسی است را با دقت قابل قبولی بر اساس نسبت پوکی اولیه و رطوبت طبیعی پیش بینی می‌نماید؛ به گونه‌ای که، در مقایسه با سایر روابط تجربی و شبکه مصنوعی (ANNs) سیستم تطبیقی ANFIS دارای نتایج بهتری است و بر اساس نتایج کسب شده RSME‌ آن حدود 15 درصد و خطاای ایجاد شده در حدود 12 درصد است.

کلیدواژه‌ها


عنوان مقاله [English]

Application of ANFIS Adaptive System to Estimate the Potential Consolidation of Clay Soils

نویسنده [English]

  • javad ahadiyan
چکیده [English]

The consolidation phenomenon occurs in the construction of structures on saturated clay soils which in effect this phenomenon the soil particles is compressed. In sometimes an irreparable damage occurs in the development projects affected of the soil settlement. Hence the prediction of soil settlement is necessary. The compression index (Cc) is one of the coefficients which apply to calculations of soil settlements. This coefficient is determined by odoemeter test which is test is very expensive and much time is wasted. So that in past years an extensive function for prediction of Cc with physical properties of soil have been developed by various researchers. In this study, the important and valuable results of consolidation test were gathered at different locations in khuzestan province of Iran. Using the gathered data the compression index was determined. Then the results were evaluated using the simultaneous implementation technique of artificial neural network and fuzzy logic (ANFIS). In this research, also, the results of ANFIS system were compared to the results of empirical formula. The error of empirical functions to measured data in the best cases was predicted about 20 percent. However, the most of empirical relationships in the study area have not acceptable accuracy. Findings show that ANFIS adaptive system predicates compression index which it is a fundamental parameter for determining of clay soil settlement. The results of this system were satisfactory with void ratio and wet content variable in situ clay soils. In addition, this system with 15 percent RMSE and 12 percent error has a better result than past empirical function and artificial neural network.

کلیدواژه‌ها [English]

  • Compression Index
  • ANFIS adaptive system
  • Physical properties
  • consolidation
  • empirical function
[1]  احدیان، ج. 1383. برآورد شاخص شاخص فشردگی، Cc  با استفاده از خصوصیات فیزیکی در منطقه در منطقه اهواز . پایان نامه کارشناسی ارشد. دانشکده مهندسی علوم آب دانشگاه شهید چمران اهواز.
[2]     Sketmpton, A. W. 1944.Notes on the compressibility of clays. Quarterly Journal of the Geotechnical        Society of London. Vol.100.pp.110-135.
[3]     Nishida, Y. 1956. Abrief note on compression index of soil. Journal of the Soil Mechanic and Foundation Engineering Division. ASCE. Vol. 82 (SM3): pp. 1027-1-1027-14.
[4]     Oswald, R.H. 1980.Universal compression index equation. Journal of Geotechnical Engineering Division.ASCE.106:1179-1199.
[5]     Rendon-Herrero, O. 1980. Universal compression index equation. Journal of Geotechnical Engineering Division.ASCE.Vol. 106(11) pp.1179-1200.
 
[6]     Nagaraj, T., and Murty B.R.S.1985.Predication of the predication of the pre-consolidation pressure and recompression index of soil. Geotechnical Testing Journal. Vol.8.no.4. 199-202.
 
[7]     Park,J.H.,and Koumoto, t. 2004. New compression index equation. Journal of Geotechnical and Geoenvironmental Engineering. ASCE. 130(2) pp.223-226.
[8]     Cavalieri,K.,M.,V.,Arvidsson,J.,Piers da Silva,A.,Keller.T.2008. Determination of pre-compression stress from un-axial compression tests. Soil & Tillage Research Vol. 98, pp.17–26.
[9]  دریایی، م.،کاشفی پور، م.، احدیان، ج.، قبادیان، ر. 1388. مدلسازی شاخص فشردگی خاکهای ریزدانه به کمک شبکه ی عصبی مصنوعی و مقایسه با سایر روابط تجربی. مجله ی آب و خاک جلد 24 شماره ی 4،صص 667-659.
[10] Saffih-hdadi,K., Defossez,P.,Richard,G.,Cui,Y.J.,Tang,A.M.,Chaplain.V.2009. A method for predicting soil susceptibility to the compaction of surface layers as a function of water content and bulk density. Soil & Tillage Research.Vol.105,pp.96-103.
[11] Shahin, M.A., Jaksa, M.B., and Maier, H.R.2001. Artificial neural network applications in geotechnical engineering. Australian Geomechanics.pp. 49-62.
 
[12] Alivisi,s.Mascellani,G.,Franchini, M.,and Bardossy,A.2005.Water level Forecasting through Fuzzy logic and Artificial Neural Network Approaches.Hydrol.Earth Sys.Sci.Discuss.,2,pp.1107-1145.
[13]پوستی زاده، ن.1385. پیش بینی جریان رودخانه با استفاده از سیستم استنتاج فازی. پایان نامه کارشتاسی ارشد. دانشکده کشاورزی دانشگاه تربیت مدرس.
[14] Swain,P.C. and Nanduri,U.V.2005. Stream flow Forecasting using Nauru-Fuzzy Inference System.Advanced in Water Resources.Vol.32, Issue 2, pp.1-14.
[15]طارقیان،ر.1386. پیش بینی دبی ورودی و سطح آب مخزن سد دز با استفاده از سیستم­های فازی و شبکه­های عصبی. پایان           نامه کارشناسی ارشد.دانشکده مهندسی علوم آب شهید چمران اهواز.
[16] Park,H and Lee,S.R.2011. Evaluation of the compression index of soils using an artificial neural network. Computers and Geotechnics.Vol.38, pp.472-481.
[17]کیا، م. 1389. منطق فازی در MATLAB ، انتشارات کیان رایانه سبز.304 صفحه.
[18]منهاج، م. 1379. مبانی شبکه های عصبی، انتشارات دانشگاه صنعتی امیرکبیر. 715 صفحه.
[19] Takagi, T. and Sugeno, M. 1985.Fuzzy Identification of Systems and its Application to Modeling and      Control. IEEE Trans. Syst.Man. Cybernetic; Vol.15, pp.116-132.