مطالعه آزمایشگاهی و ارائه مدلی جدید به منظور پیش بینی ویسکوزیته دینامیکی نانوسیال آب- اکسید آلومینیوم

نوع مقاله: پژوهشی

نویسندگان

دانشگاه سمنان

چکیده

در این نوشتار، مطالعه ای آزمایشگاهی بر روی ویسکوزیته ی دینامیکی نانوسیال آب- اکسید آلومینیوم گزارش و تحلیل شده است. نتایج آزمایشگاهی حاصله با پرکاربردترین مدل های کلاسیک موجود یعنی مدل های اینشتین و وانگ مقایسه و تحلیل، شده است. نتایج نشان می دهد که ویسکوزیته ی دینامیکی اندازه گیری شده در آزمایش ها با مدل های موجود، فاصله دارند. با توجه به اختلاف یافته های تجربی و نتایج تخمینی معادلات کلاسیک، یک رابطه ی تجربی برای تخمین ویسکوزیته ی دینامیکی موثر نانوسیال آب-اکسیدآلومینیوم مبتنی بر نتایج آزمایش ارائه و شرح داده می شود.
در این تحقیق، از ویسکومتر مخروط و صفحه ی بروکفیلد برای اندازه گیری ویسکوزیته ی دینامیکی نانوسیال آب- اکسید آلومینیوم با کسر حجمی های 0. 05 (5. 0%)، 0. 04 (4. 0%)، 0. 03 (3. 0%)، 0. 02 (2. 0%)، 0. 01 (1. 0%)، 0. 005 (0. 5%) و 0. 0025( 0. 25%)، در دمای اتاق، استفاده شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental study and proposing new model to predict the dynamic viscosity of Aluminum oxide–water nanofluids

نویسندگان [English]

  • سیف الله سعدالدین
  • s s
  • علی علیرضایی
  • a a
چکیده [English]

In this paper, an experimental investigation on dynamic viscosity has been performed. Then, Experimental results were compared with classic theoretical models such as, Einstein and Wang models. The results represented that, the results obtained from experimental tests were far away from the theoretical models. Therefor an empirical correlation for predicting the effective dynamic viscosity of Alumina-water nanofluids has proposed and discussed. In this study, there was used from cone and plate Brookfield viscometer and the viscosities of Al2O3-water nanofluids with different solid volume fractions of 0. 05 (5. 0%), 0. 4(4. 0%), 0. 03 (3. 0%), 0. 02(2. 0%), 0. 01 (1. 0%), 0. 005 (0. 5%) and 0. 0025 (0. 25%) is measured at room temperature.

کلیدواژه‌ها [English]

  • Nanofluids
  • Aluminum Oxide
  • viscosity
  • Heat transfer
  • Alumina
 

[1]         Choi SUS., “Enhancing thermal conductivity of fluids with nanoparticles,” Dev. Appl. non-Newtonian flows, vol. 31, no. 66, pp. 99–105, 1995.

[2]         M. Hemmat Esfe, “An experimental investigation and new correlations of viscosity of ZnO-EG nanofluid at various temperatures and different solid volume fractions,” Exp. Therm. Fluid Sci., vol. 55, pp. 1–5, 2014.

[3]         N. H. H. Masuda, A. Ebata, K. Teramae, “Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of γ - Al2O3, SiO2 and TiO2 ultra-fine particles),” Netsu Bussei 4, vol. 4, no. 4, pp. 227–233, 1993.

[4]         H. U. Kang, S. H. Kim, and J. M. Oh, “Estimation of Thermal Conductivity of Nanofluid Using Experimental Effective Particle Volume,” Exp. Heat Transf., vol. 19, no. 3, pp. 181–191, Sep. 2006.

[5]         S. Kumar, S. K. Prasad, and J. Banerjee, “Analysis of flow and thermal field in nanofluid using a single phase thermal dispersion model,” Appl. Math. Model., vol. 34, no. 3, pp. 573–592, Mar. 2010.

[6]         R. Chein and G. Huang, “Analysis of microchannel heat sink performance using nanofluids,” Appl. Therm. Eng., vol. 25, no. 17–18, pp. 3104–3114, Dec. 2005.

[7]         E. V. Timofeeva, J. L. Routbort, and D. Singh, “Particle shape effects on thermophysical properties of alumina nanofluids,” J. Appl. Phys., vol. 106, no. 1, p. 014304, Jul. 2009.

[8]         J. Wang, R. Prasher, D. Song, and P. Phelan, “Measurements of nanofluid viscosity and its implications for thermal applications,” Appl. Phys. Lett., vol. 89, no. 13, p. 133108, Sep. 2006.

[9]         N. Putra, S. K. Das W. Roetzel, “Natural convection of nanofluidsNo Title,” Heat Mass Transf., vol. 39, pp. 775–784, 2003.

[10]       S. W. W. Daungthongsuk, “A critical review of convective heat transfer of nanofluids,” Renew. Sustain. Energy Rev., pp. 1–23, 2005.

[11]       S. W. Mohammad Hemmat Esfe, Seyfolah Saedodin, Mehdi Bahiraei, Davood Toghraie, Omid Mahian, “Thermal conductivity modeling of MgO/ EG nanofluids using experimental data and artificial neural network,” , J. Therm. Anal. Calorim.

 [12]      M. Hemmat Esfe, Seyfolah Saedodin, Omid Mahian, “Thermal Conductivity of Al2O3/ Water Nanofluids: Measurement, Correlation, Sensitivity Analysis, and Comparisons with Literature Reports,” J. Therm. Anal. Calorimetry(Springer), vol. DOI 10.100.

[13]       M. Hemmat Esfe, S. Saedodin, “Experimental studies on the convective heat transfer performance and thermophysical properties of MgO–water nanofluid under turbulent flow Preparation of nanofluid, Experimental Thermal and Fluid Science,” j.expthermflusci., vol. 10, 2013.

[14]       M. Hemmat Esfe, Seyfolah Saedodin, Omid Mahian, “Heat transfer characteristics and pressure drop of low concentrations of COOH- Functionalized DWCNTs/water nanofluid in turbulent flow,” Int. J. Heat Mass Transf., vol. 73, no. 186–194, 2014.

[15]       Fereidoon, A., Saedodin, S., Hemmat Esfe, M. and Noroozi, “Evaluation of mixed convection in inclined square lid driven cavity filled with Al2O3/water nanofluid,” Eng. Appl. Comput. Fluid Mech., vol. 7, no. 1, pp. 55–65, 2013.

[16]       Hemmat Esfe, M., Saedodin, “Flow behavior and thermal performance of double lid driven cavity subjected to nanofluid with variable properties,” J. Model. Eng., vol. 10, no. 30, pp. 43–60, 2012.

[17]       Hemat Esfe, M., mirtalebi S., ghadak, F., haghiri, A., “Numerical Study of Mixed Convection Flows in a Two-sided Inclined Lid-driven Cavity Utilizing Nano-fluid with Various Inclination Angles and Ununiformed Temperature,” Aerosp. Mech. J., vol. 8, no. 2, pp. 69–83, 2012.

[18]       S. Seyfolah Saedodin, Mojtaba Biglari, Mohammad Hemmat Esfe, “Mixed convection heat transfer performance in a ventilated inclined cavity containing heated blocks: Effect of dispersing Al2O3 in water and aspect ratio of the block,” J. Comput. Theor. Nanosci., vol. 10, pp. 2663–2675, 2013.

[19]       S.  Sadodin, S., Hemmat Esfe, M., Noroozi, “Numerical simulation of mixed convection of fluid flow and heat transfer within car radiator with an inside obstacle filled with nanofluid,” E-Modeling, vol. 9, no. 25, pp. 33–46, 2011.

[20]       M. Hemmat Esfe, Seyfolah Saedodin, “Influence of nanofluid variable properties on combined convection heat transfer in a two sided lid-Driven enclosure with sinusoidal heating,” Aerosp. Mech. Journal,.

[21]       S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” Oct. 1995.

[22]       J.-H. Lee, K. S. Hwang, S. P. Jang, B. H. Lee, J. H. Kim, S. U. S. Choi, and C. J. Choi, “Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles,” Int. J. Heat Mass Transf., vol. 51, no. 11–12, pp. 2651–2656, Jun. 2008.

[23]       M. Liu, M. C. Lin, C. Y. Tsai, and C. Wang, “Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method,” vol. 49, pp. 3028–3033, 2006.

[24]       S. M. S. MURSHED, K. A. I. C. LEONG, C. YANG, and N.-T. NGUYEN, “CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF AQUEOUS TiO2 NANOFLUID UNDER LAMINAR FLOW CONDITIONS,” Int. J. Nanosci., vol. 07, no. 06, pp. 325–331, Dec. 2008.

[25]       P. Tie, Q. Li, and Y. Xuan, “International Journal of Thermal Sciences Heat transfer performance of Cu e water nano fl uids in the jet arrays impingement cooling system,” Int. J. Therm. Sci., vol. 77, pp. 199–205, 2014.

[26]       Wei Wang, “A Comprehensive Model for the Enhanced Thermal Conductivity of Nanofluids.” p. 5, 2012.

[27]       M. Corcione, “Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids,” Energy Convers. Manag., vol. 52, no. 1, pp. 789–793, 2011.