طراحی مسیر بهینه برای ربات کابلی معلق بوسیله میانیاب چندجمله‌ای درجه چهار و الگوریتم مثلث بهینه‌گر

نوع مقاله: پژوهشی

نویسندگان

دانشگاه سمنان

چکیده

هدف این مقاله یافتن مسیر بهینه با کمترین تلاش، جهت جابجایی مجری نهایی ربات سه کابلی فضایی، در فضای کاریش می‌باشد. جهت این کار، ابتدا به مدلسازی سینماتیکی و دینامیکی ربات سه کابلی فضایی پرداخته می‌شود، سپس شبیه سازی و استخراج نتایج با دو روش مستقیم و غیر مستقیم انجام می‌گیرد. روش حل غیرمستقیم بر اساس روش حساب تغییرات می‌باشد. شرایط لازم بهینگی به منظور حداقل شدن گشتاور بین دو نقطه داده شده و با استفاده از اصل مینیمم پونتریاگن استخراج می‌گردد. این شرایط بهینگی تشکیل یک مساله مقدار مرزی دو نقطه‌ای می‌دهد که با الگوریتم‌های عددی قابل حل می باشد. روش مستقیم، از ترکیب یک روش بهینه سازی فراابتکاری و یک میانیاب چندجمله‌ای، به همراه معادلات ربات ایجاد می‌گردد و این مقاله از روش فراابتکاری الگوریتم مثلث بهینه‌گر و میانیاب چندجمله‌ای درجه چهار استفاده کرده است. این ترکیب جدید ایجاد شده با چند‌جمله‌ای مرتبه چهار، بجای استفاده از مقادیر میانی مسیر به عنوان متغیرهای طراحی، ثابت‌های مشخصی از چند‌جمله‌ای را متغیر طراحی جهت بهینه سازی مسیر، قرار می-دهد. روش غیرمستقیم پاسخ دقیق را می‌دهد، ولی استخراج شرایط بهینگی آن دارای محاسبات ریاضی، دشوار و زمانبر می‌باشد. در حالی‌که روش مستقیم پاسخ تقریبی مسئله را بدون محاسبات جبری اولیه می‌دهد. در انتها دو مثال، با روش مستقیم و روش غیرمستقیم انجام می‌شود و مقایسه نتایج، کارایی مناسب روش مستقیم پیشنهادی را نشان می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Optimal Path Planning of Suspended Cable Robot by Polynomial Interpolation of Four Degree and Triangular Optimizer Algorithm

نویسندگان [English]

  • amin nikoobin
  • ali ghoddosian
  • mojtaba riyahi vezvari
چکیده [English]

The purpose of this article is finding the optimal path with minimum effort to move the end-effector of the three cable spatial robot in work space. For this work, first, kinematic and dynamic modeling is done of the three cable spatial robot. Then simulation and results extraction are done by both direct and indirect methods. Based on of indirect solution method is the calculus of variations. Optimality necessary condition is given in order to minimize the torque between the two points and is extracted using the pontryagin minimum principle. This optimality condition is formed a boundary value problem of two-point, which can be solved using numerical algorithms. Direct method is created by combining a metaheuristic optimization method, a polynomial interpolation and the robot equations. This article is used the metaheuristic method of triangular optimizer algorithm and the polynomial interpolation of four degree. This new combination created with the polynomial of four degree, instead of using the intermediate values of the path as design variables, specified constants of polynomial puts the design variable in order to path optimization. The indirect method gives the exact response, but extraction of optimality condition its, is the difficult in terms of calculations mathematical. While the direct method gives the approximate response without algebraic calculations. Finally, two examples are done with direct method and indirect method. The results comparisons are show the appropriate efficiency of the suggested direct method.

کلیدواژه‌ها [English]

  • Path Planning
  • Optimal Path
  • cable robot
  • Polynomial Interpolation
  • triangular optimizer algorithm
 

[1] R.G. Roberts, T. Graham, T. Lippitt. (1998). “On the Inverse Kinematics, Statics, and Fault Tolerance of Cable-Suspended Robots”. Journal of Robotic Systems, Vol. 15, No. 1, pp. 581-597.

[2] W.J. Shiang, D. Cannon. (2000). “Optimal Force Distributbion Applied to a robotic crane with Flexible Cables”. International Conference on Robotics&Automation, Sanfrancisco, CA, Proceedings of the 2000 IEEE, PP. 1948-1954.

[3] R.L. Williams, P. Gallina. (2001). “Planar Cable-Direct-Driven Robots, Part I: Kinematics and Statics”. Proc. 27th Design Automation Conf. of the ASME, Sep. 2001, pp. 1-9.

[4] R.L. Williams, P. Gallina. (2001). “Planar Cabledirect-driven Robots, Part II: Dynamics and Control”. Proc. 27th Design Automation Conf. of the ASME, pp. 1-8.

[5] S.R. Oh, K.K. Mankala, S.K. Agrawal, J. Albus. (2005). “Dynamic Modeling and Robust Controller Design of a two Stage Parallel Cable Robot”. J. Multibody System Dynamics, Vol. 13, pp. 385-399.

[6] K. Kozak, Q. Zhou, J. Wang. (2006). “Static Analysis of Cable-Driven Manipulators with Non-Negligibile Cable mass”. IEEE Transactions on Robotics, Vol. 22, No. 3, pp. 425-433.

[7] A. Afshari, A. Meghdari. (2007). “New Jacobian Matrix and Equations of Motion for a 6 d.o.f Cable-driven Robot”. International Journal of Advanced Robotic Systems, Vol. 4, pp. 63-68.

[8] J.P. Merlet. (2009). “Kinematic analysis of a Spatial four-wire driven parallel crane without constraining mechanism”. Proceedings of computational kinematics, Duisburg, pp. 1-8.

[9] H. Qiu, H. Ozaki. (1995). “Expression and Optimization of Joint Trajectory of Manipulator Using Uniform B-Spline”. 0-7803-2559-1/95, IEEE.

[10] S.A. Bazaz, B. Tondu. (1999). “Minimum time on-line joint trajectory generator based on low order spline method for industrial manipulators”. Robotics and Autonomous Systems 29, pp. 257–268.

[11] T. Chettibi, H.E. Lehtihet, M. Haddad, S. Hanchi. (2004). “Size optimization of space trusses using Big Bang–Big Crunch algorithm”. European Journal of Mechanics A/Solids 23, pp. 703–715.

[12] T. Lianfang, C. Collins. (2004). “An Effective Robot Trajectory Planning Method Using Genetic Algorithm”. Mechatronics, Vol. 14, No. 5, pp. 455-470.

[13] M.H. Korayem, A. Nikoobin. (2007). “Maximum payload for flexible joint manipulators in point-to-point task using optimal control approach”. Int. J. Adv. Manuf. Technol., 38(9/10), pp. 1045-1060.

[14] مارال صالحی و امین نیکوبین. (1392). "طراحی مسیر بهینه برای ربات با مفاصل انعطاف پذیر: ظرفیت حمل بار بیشینه- دامنه ارتعاشات کمینه". مجله علمی پژوهشی مهندسی مکانیک مدرس، فوق العاده، دوره 13 شماره 14، ص ص 68-80.

[15] W.J Shiang, D. Cannon, J. Gorman. (2000). “Optimal Force Distributbion Applied to a Robotic Crane with Flexible Cables”. Proceedings of the 2000 IEEE, International Conference on Robotics & Automation, San Francisco, CA.

[16] M.H. Korayem, M. Bamdad. (2009). “Dynamic load-carrying capacity of cable-suspended parallel manipulators”. Int.J. Adv. Manuf. Technol. Vol. 44, pp. 829-840.

[17] S. Lahouar, E. Ottaviano, S. Zeghoul, L. Romdhane, M. Ceccarelli. (2009). “Collision free path-planning for cable-driven parallel robots”. Robotics and Autonomous Systems 57, pp. 1083-1093.

[18] A. Trevisani. (2010). “Underconstrained planar cable-direct-driven robots: A trajectory planning method ensuring positive and bounded cable tensions”. Mechatronics 20, pp. 113–127.

[19] M.H. Korayema, M. Bamdad, A. Akbareha. (2010). “Trajectory Optimization of Cable Parallel Manipulators in Point-to-Point Motion”. Journal of Industrial Engineering, pp. 29-34.

[20] M.H. Korayem, M. Bamdad, H. Tourajizadeh, A.H. Korayem, S. Bayat. (2011). “Analytical design of optimal trajectory with dynamic load-carrying capacity for cable-suspended manipulator”. Int. J. Adv. Manuf. Technol. DOI 10.1007/s00170-011-3579-9.

[21] H.R. Fahham, M. Farid, M. Khooran. (2011). “Time Optimal Trajectory Tracking  of Redundant Planar Cable-Suspended Robots Considering Both Tension and Velocity Constraints”. Journal of Dynamic Systems, Measurement and Control, Vol. 133.

[22] علی قدوسیان، امین نیکوبین، مجتبی ریاحی وزواری. (1393). "بهینه سازی اندازه و شکل سازه­های خرپا با روش بهینه­سازی الگوریتم مثلث بهینه­گر". پذیرفته شده جهت چاپ در مجله علمی پژوهشی مدلسازی در مهندسی، دانشگاه سمنان.

[23] D. E.Kirk. (1970). “Optimal Control Theory an introduction”. Dover Publications, Inc., Mineola, New York.{Carey, 1998 #8}