بررسی اثر زاویه کایرال بر کمانش محوری و پیچشی نانولوله های کربنی تک جداره به کمک روش اجزا محدود

نوع مقاله : پژوهشی

نویسندگان

1 دانشگاه خواجه نصیر

2 دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده

در این پژوهش اثر زاویه کایرال بر رفتار کمانشی نانولوله‌های کربنی تک-جداره بررسی می‌شود. برای اینکه اثر زاویه کایرال مستقل از اثر اندازه بررسی گردد از هندسه‌هایی با طول و قطر برابر اما زاویه کایرال متفاوت استفاده شده است. برای مدل کردن پیوندهای شیمیایی بین اتم‌های کربن، انرژی پتانسیل تئوری مکانیک مولکولی با انرژی کرنشی ذخیره شده در یک تیر سه بعدی که اتصال بین دو اتم کربن را مدل می‌کند، برابر قرار داده‌ می‌شود. پس از تعیین خواص المان تیر جایگزین، مختصات گره‌ها (اتم‌های کربن) و المان‌ها به وسیله برنامه‌ای که در نرم افزار متلب تهیه شده است تعیین می‌شود. سپس به کمک نرم افزار انسیس اثر زاویه کایرال بر بار کمانش محوری و پیچشی، برای انواع ساختارها بررسی می‌شود. نتایج نشان می‌دهند که در کمانش محوری، زاویه‌ی کایرال بر بار کمانشی چندان تاثیر ندارد اما در حالت بارگذاری پیچشی زاویه‌ی کایرال یک پارامتر تاثیرگذار است. نانولوله‌ با زاویه‌ی کایرال 11/19 درجه بیشترین مقدار گشتاور بحرانی را دارد. در حالت بارگذاری پیچشی پادساعت-گرد، نانولوله با زاویه‌ی کایرال 64/9 درجه کمترین مقدار گشتاور بحرانی را دارد. هم‌چنین در حالت پیچشی جهت پیچش نیز مهم است به طوری که برای ساختارهایی با زاویه کایرال 48/15 درجه اختلاف بین حالت ساعت‌گرد و پادساعت‌گرد به بیشترین مقدار خود می‌رسد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Chirality Effect on Axial and Torsional Buckling Behavior of SWCNTs Using Finite Element Method

نویسندگان [English]

  • Mahnaz Zakeri 1
  • Omid Afzalnejad 2
1
2
چکیده [English]

In this paper, chirality effect on the buckling behavior of SWCNTs has been investigated. In order to explore the effect of chiral angle, all structures are used with the same length and diameter but different chiral angles. For modeling of chemical bonds between carbon atoms, potential energy of molecular mechanics theory and strain energies of a 3D beam element have been equalized. After calculating the element properties, the node coordinates have been determined using a computer code developed in MATLAB software. Then, ANSYS software is used to study the chirality effects on axial and torsional buckling load. Results show that the chiral angle has no significant influence on critical axial force. However, chiral angle is an effective parameter in torsional buckling. Chiral angle of 19.11 degree has the maximum critical torsional moment among all structures. In counter-clock-wise loading condition, chiral angle of 9.64 degree has the minimum critical torsional moment. Also, the direction of twisting (cw or ccw) is important and the difference between cw and ccw critical torsional moment reaches its maximum value for chiral angle of 15.48 degree.

کلیدواژه‌ها [English]

  • Carbon nanotubes
  • Chiral Angle
  • Torsional Buckling
  • Axial Buckling
  • Finite element modeling
 
[1] Iijima, S. (1991). "Helical microtubules of graphitic carbon". Nature 354, 56-58.
[2] Han, Q., and Lu, G. (2003). "Torsional buckling of a double-walled carbon nanotube embedded in an elastic medium". European Journal of Mechanics-A/Solids 22, 875-883.
[3] Wang, X., Yang, H., and Dong, K. (2005). "Torsional buckling of multi-walled carbon nanotubes". Materials Science and Engineering: A 404, 314-322.
[4] Chang, T., Li, G., and Guo, X. (2005). "Elastic axial buckling of carbon nanotubes via a molecular mechanics model". Carbon 43, 287-294.
[5] Cao, G., and Chen, X. (2007). "The effects of chirality and boundary conditions on the mechanical properties of single-walled carbon nanotubes". International Journal of Solids and Structures 44, 5447-5465.
[6] Wang, X., Lu, G., and Lu, Y. (2007). "Buckling of embedded multi-walled carbon nanotubes under combined torsion and axial loading". International journal of solids and structures 44, 336-351.
[7] Xiaohu, Y., and Qiang, H. (2007). "Investigation of axially compressed buckling of a multi-walled carbon nanotube under temperature field". Composites science and technology 67, 125-134.
[8] Sun, C., and Liu, K. (2008). "Combined torsional buckling of multi-walled carbon nanotubes coupling with axial loading and radial pressures". International journal of solids and structures 45, 2128-2139.
[9] Yao, X., Han, Q., and Xin, H. (2008). "Bending buckling behaviors of single-and multi-walled carbon nanotubes". Computational Materials Science 43, 579-590.
[10] Ghorbanpour Arani, A., Rahmani, R., and Arefmanesh, A. (2008). "Elastic buckling analysis of single-walled carbon nanotube under combined loading by using the ANSYS software". Physica E: Low-dimensional Systems and Nanostructures 40, 2390-2395.
[11] Kang, Z., Li, M., and Tang, Q. (2010). "Buckling behavior of carbon nanotube-based intramolecular junctions under compression: Molecular dynamics simulation and finite element analysis". Computational Materials Science 50, 253-259.
[12] Ansari, R., and Rouhi, S. (2010). "Atomisticfinite element model for axial buckling of single-walled carbon nanotubes". Physica E: Low-dimensional Systems and Nanostructures 43, 58-69.
[13] Saavedra Flores, E., Adhikari, S., Friswell, M., and Scarpa, F. (2011). "Hyperelastic axial buckling of single wall carbon nanotubes". Physica E: Low-dimensional Systems and Nanostructures 44, 525-529.
[14] Ansari, R., Sahmani, S., and Rouhi, H. (2011). "Axial buckling analysis of single-walled carbon nanotubes in thermal environments via the Rayleigh–Ritz technique". Computational Materials Science 50, 3050-3055.
[15] Ghavamian, A., and Öchsner, A. (2012). "Numerical investigation on the influence of defects on the buckling behavior of single-and multi-walled carbon nanotubes". Physica E: Low-dimensional Systemsand Nanostructures 46, 241-249.
 [16] Şimşek, M., and Yurtcu, H. (2013). "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory". Composite Structures 97, 378-386.
[17] Tserpes, K., and Papanikos, P. (2005). "Finite element modeling of single-walled carbon nanotubes". Composites Part B: Engineering 36, 468-477.
[18] Lu, X., and Hu, Z. (2012). "Mechanical property evaluation of single-walled carbon nanotubes by finite element modeling". Composites Part B: Engineering 43, 1902-1913.
[19] Wernik, J., and Meguid, S. (2011). "Multiscale modeling of the nonlinear response of nano-reinforced polymers". Acta Mechanica 217, 1-16.
[20] Li, C., and Chou, T.W. (2003). "A structural mechanics approach for the analysis of carbonnanotubes".
International Journal of Solids and Structures 40, 2487-2499.
[21] Ansys Software Help, 2012.
[22] Chen, L., Zhao, Q., and Zhang, H. (2010). Axial buckling behavior of single-walled carbon nanotubes with finite element modeling. In Nano/Micro Engineered and Molecular Systems (NEMS), 2010 5th IEEE International Conference, pp. 276-279.
[23] Shima, H. (2012). "Buckling of carbon nanotubes: a state of the art review". Material 5, 47-84.