ارزیابی تجربی خواص ترموفیزیکی، انتقال حرارت جابجایی و افت فشار در نانوسیال آب-نانولوله کربنی چند جداره عامل دار شده

نوع مقاله : پژوهشی

نویسندگان

دانشگاه سمنان

چکیده

در این تحقیق، انتقال حرارت جابجایی نانوسیال عامل دار شده نانولوله چندجداره کربنی -آب با عامل کربوکسیل در کسرهای حجمی پایین در جریان مغشوش، درون یک مبدل، مورد بررسی آزمایشگاهی قرار گرفته است. تاثیر کسر حجمی در محدوده 05/0% تا 1% بر انتقال حرارت جابجایی در محدوده عدد رینولدز بین 5000 تا 27000 مطالعه شده است. همچنین ضریب هدایت حرارتی و ویسکوزیته دینامیکی نانوسیال در دماها و کسرهای حجمی مختلف به صورت تجربی، اندازه‌گیری شده است. به روشنی وابستگی شدید ضریب هدایت حرارتی و ویسکوزیته دینامیکی نانوسیال به دما و کسر حجمی مشاهده گردید. از این‌رو، برای پیش‌بینی ضریب هدایت حرارتی نانوسیال عامل دار شدهنانولوله کربنی چند جداره-آب، دو مدل جدید بر مبنای برازش منحنی با داده های تجربی با تابعیت دما و کسرحجمی ارائه گردید.در ادامه این تحقیق، ضریب انتقال حرارت جابجایی، عدد ناسلت، افت فشار و ضریب عملکرد برای کسر های حجمی مختلف محاسبه و نمودارهای مرتبط با آنان ارائه گردید. نتایج تجربی به روشنی نمایان می سازد که هر دو فاکتور ضریب انتقال حرارت و بازدهی حرارتی با افزایش کسر حجمی، افزایش می یابند. بطور متوسط %78 افزایش در ضریب انتقال حرارت، % 5/36 افزایش در عدد ناسلت متوسط و % 3/ 27 تحمیل افت فشار در بالاترین کسر حجمی نانولوله کربنی چند جداره در آب، مشاهده شد.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental study on convective heat transfer, thermo-physical properties and pressure drop of low concentration COOH- Functionalized MWCNTs/water nanofluid flow

نویسندگان [English]

  • مجتبی بیگلری
  • m b
  • هادی رستمیان
  • sh r
چکیده [English]

In this paper, an experimental study carried out to investigate the turbulent convective heat transfer performance of low concentration of COOH-functionalize MWCNT/water nanofluid flowing through a circular tube. The effect of solid concentration from 0.0005 to 0.01 on convective heat transfer studied at Reynolds number in the range between 5000 to 27000.Also Thermal conductivity and dynamic viscosity of nanofluid has been measured experimentally in various temperatures and solid volume fractions. It is observed that both thermal conductivity and dynamic viscosity of nanofluid strongly depend on temperature and solid concentration. Therefore two new correlations as a function of temperature and concentration were proposed for predict the thermal conductivity of functionalized MWCNTs/water nanofluid.
In addition,Heat transfer coefficient, Nusselt number, pressure drop and thermal performance factor of nanofluid were presented for different volume fractions. The experimental results clearly indicate that increase in both heat transfer coefficient and Thermal performance factor is obtained by increasing solid concentration. In average, 78% increase in heat transfer coefficient, 36.5% increase in average Nusselt number and 27.3% penalty in pressure drop was observed at the highest concentration of MWCNTs in water abstract.

کلیدواژه‌ها [English]

  • Functionalized MWCNT
  • Nanofluid
  • Heat transfer
  • Thermal conductivity
  • dynamic viscosity
1-        
[1] S.U.S. Choi,Enhancing thermal conductivity of fluids with nanoparticles, In: Proceedings of the 1995 ASME international mechanical engineering congress and exposition, San Francisco, CA, USA, 1995.
 [2] Y. Ding, H. Alias, D. Wen, R.A. Williams,Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), Int. J. Heat Mass Transfer, Vol. 49, pp. 240-250, 2006.
 [3] L. Chen, H. Xie, Y. Li, W. Yu, Nanofluids containing carbon nanotubes treated by mechanochemical reaction, Thermochim. Acta, Vol. 477,pp. 21-24, 2008.
[4] L. Chen, H. Xie, Surfactant-free nanofluids containing double- and single-walled carbon nanotubes functionalized by a wet-mechanochemical reaction, Thermochim. Acta, Vol. 497,pp. 67-71, 2010.
 [5] S.U.S. Choi, Z.G. Zang, W. Yu, F.E. Lookwood, E.A. Grulke, Anomalous thermal conductivity enhancement in nanutube suspension, Appl. Phys. Lett, Vol. 79, pp. 2252-2254, 2001.
[6] M.J. Assael, C.F. Chen, I. Metaxa, W.A. Wakeham, Thermal conductivity of suspensions of carbon nanotubes in water, Int. J. Thermophys, Vol. 25, pp. 971-985, 2004.
 [7] R. Prasher, P. Bhattacharya, P.E. Phelan, Thermal conductivity of nanoscale colloidal solutions (nanofluids), Phys. Rev. Lett., Vol. 94, 025901, 2005.
[8] M. Liu, M.C. Lin, I.T. Huang, Ch. Wang, Enhancement of thermal conductivity with carbon nanotube for nanofluids, International Communications in Heat and Mass Transfer, Vol. 32, pp. 1202–1210, 2005.
[9] Z.Talaei, AR.Mahjoub, AM.Rashidi, A Amrollahi, ME.Meibodi. The effect of functionalized group concentration on the stability and thermal conductivity of carbon nanotube fluid as heat transfer media, Int Commun Heat Mass; Vol. 38, pp. 513–7, 2011.
[10] P. Garg, J.L. Alvarado, Ch. Marsh, Th.A. Carlson, D. Kessler, K. Annamalai, An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids, Int. J. HeatMass Transfer, Vol. 52,pp. 5090-5101, 2009 .
[11] G.H. Ko, K. Heo, K. Lee, D.S. Kim, Ch. Kim, Y. Sohn, M. Choi, An experimental study on the pressure drop of nanofluids containing carbon nanotubes in a horizontal tube, Int. J. Heat Mass Transfer, Vol. 50,pp. 4749-4753, 2007.
[12] I. Madni, Ch. Hwang, S-D. Park, Y-H. Choa, H-T. Kim, Mixed surfactant system for stable suspension of multiwalled carbon nanotubes, Colloidals Surf. A Physicochem. Eng. Aspects, Vol. 358, pp. 101-107, 2010.
[13]A. Indhuja, K.S. Suganthi, S. Manikandan, K.S. Rajan, Viscosity and thermal conductivity of dispersions of gum arabic capped MWCNT in water: Influence of MWCNT concentration and temperature, Journal of the Taiwan Institute of Chemical Engineers, Vol. 44, pp. 474–479, 2013.
[14] A. Amrollahi, A. Rashidi, R. Lotfi, M.E. Meibodi, K. Kashefi, Convection heat transfer of functionalized MWNT in aqueous fluids in laminar and turbulent flow at the entrance region, Int. Commun. Heat Mass Transfer, Vol. 37, pp. 717–723, 2010.
 [15] A. Ghajar, L.-M. Tam, Heat transfer measurements and correlations in the transition region for a circular tube with three different inlet configurations, Experimental thermal and fluid science, Vol. 8, pp. 79–90, 1994.
[16] S. Kakac, A. Pramuanjaroenkij, Review of convective heat transfer enhancement with nanofluids, Int. J. Heat Mass Transfer, Vol. 52 (13–14), pp. 3187–3196, 2009.
 [17] P. Keblinski, S. Phillpot, S. Choi, J. Eastman, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), Int. J. Heat Mass Transfer, Vol. 45 (4),pp. 855–863, 2002.
 [18] A. Ghajar, L.-M. Tam, Flow regime map for a horizontal pipe with uniform wall heat flux and three inlet configurations, Exp. Therm. Fluid Sci., Vol. 10 (3),pp. 287–297, 1995.
[19] D. Kim, Y. Kwon, Y. Cho, C. Li, S. Cheong, Y. Hwang, et al., Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions, Curr. Appl. Phys., Vol. 9 (2), pp. 119–123, 2009.
 [20] Y. Ding, H. Alias, D. Wen, R.A. Williams, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), International Journal of Heat and Mass Transfer, Vol. 49, pp. 240–250, 2006.
[21] B. Pak, Y. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transfer, Vol. 11 (2),pp. 151–170, 1998.
 [22] Q. Li, Y. Xuan, Convective heat transfer and flow characteristics of Cu–water nanofluid, Sci. China, Vol. 45 (4), pp. 408–416, 2002.
[23] P. Garg, J. Alvardo, C. Marsh, T. Carlson, D. Kessler, K. Annamalai, An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids, Int. J. Heat Mass Transfer, Vol. 52 (29),pp. 5090–5101, 2009.
[24] M.A. Akhavan-Behabadi, M. Fakoor Pakdaman, M. Ghazvini, Experimental investigation on the convective heat transfer of nanofluid flow inside vertical helically coiled tubes under uniform wall temperature condition, International Communications in Heat and Mass Transfer, Vol. 39, pp. 556- 564, 2012.
 [25] D. Ashtiani, M.A. Akhavan-Behabadi, M. Fakoor Pakdaman, An experimental investigation on heat transfer characteristics of multi-walled CNT-heat transfer oil nanofluid flow inside flattened tubes under uniform wall temperature condition, International Communications in Heat and Mass Transfer, Vol. 39, pp. 1404–1409, 2012.
 [26] Y. Xuan, Q. Li, Investigation on convective heat transfer and flow features of nanofluids, Journal of Heat Transfer, Vol. 125, pp. 151–155, 2003.
 [27] F.M. White, Viscous Fluid Flow, second ed., McGraw Hill, New York, 2006.
[28] T. Guo, P. Nikolaev, A. Thess, Catalytic growth of single-walled nanotubes by laser vaporization, Chemical Physics Letter, Vol. 243, pp. 49–54, 1995.
[29] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smally, Crystalline ropes of metallic carbon nanotubes, Science, Vol. 273, pp. 483–487, 1996.
[30] K. Hernadi, A. Fonseca, J.B. Nagy, A. Siska, I. Kiricsi, Production of nanotubes by the catalytic decomposition of different carbon-containing compounds, Applied Catalysis A, Vol. 199,pp. 245–255, 2000.
[31] Y. Li, J. Chen, Y. Qin, L. Chang, Simultaneous production of hydrogen and nanocarbon from decomposition of methane of a nickel-based catalyst, Energy Fuels, Vol. 14, pp. 11888–11894, 2000.
 [32] R. Lotfi, A.M Rashidi, A. Amrollahi, Experimental study on the heat transfer enhancement of MWNT-water nanofluid in a shell and tube heat exchanger, International Communications in Heat and Mass Transfer, Vol. 39, pp. 108–111, 2012.
[33] Kh. Wongcharee, S. Eiamsa-ard, Enhancement of heat transfer using CuO/ water nanofluid and twisted tape with alternate axis, Int. Commun. Heat Mass Transfer, Vol. 38 (6),pp. 742–748, 2011.
[34] J. Buongiorno, Convective transport in nanofluids, J. Heat Transfer, Vol. 128 (3),pp. 240–250, 2006.
 [35] S.J. Kline, F.A. Mcclintock, Describing uncertainties in single-sample experiments, Mech. Eng. 75,pp. 3–8, 1953.
[36] M. Fakoor Pakdaman, M.A. Akhavan-Behabadi, P. Razi, An experimental investigation on thermo-physical properties and overall performance of MWCNT/heat transfer oil nanofluid flow inside vertical helically coiled tubes, Exp. Therm. Fluid. Sci., Vol. 40,pp. 103–111, 2012.
[37] D.H. Yoo, K.S. Hong, H.S. Yang, Study of thermal conductivity of nanofluidsfor the application of heat transfer fluids, Thermochimica Acta 455,pp. 66-69, 2007.
[38] A.R. Challoner, R.W. Powell, Thermal conductivities of liquids: new determinations for seven liquids and appraisal of existing values, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 238, pp. 90-106, 1956.
[39] H. Kurt, M. Kayfeci, Prediction of thermal conductivity of ethylene glycolwater solutions by using artificial neural networks, Applied Energy, Vol. 86,pp. 2244-2248, 2009.
[40] W. Czarnetzki, W. Roetzel, Temperature oscillation techniques for simultaneousmeasurement of thermal diffusivity and conductivity, International Journal of Thermophysics, Vol. 16,pp. 413-422, 1995.
[41] D.G. Cahill, Thermal conductivity measurement from 30 to 750 K: the 3w method, Review of Scientific Instruments, Vol. 61, pp. 802-808, 1990.
[42] V. Iranidokht, S. Hamian, N. Mohammadi, M.B. Shafii,Thermal conductivity of mixed nanofluids under controlled pH conditions, International Journal of Thermal Sciences, Vol. 74, pp. 63-71, 2013.
 [43] S.M. Fotukian, M. Nasr Esfahany, Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube, Int. Commun. Heat Mass Transfer, Vol. 37 (2), pp. 214–219, 2010.
[44] F.P. Incropera, D.P. De Witt, Fundamentals of Heat and Mass Transfer, fourth ed., John Wiley, New York, 1996.