بررسی رفتار ارتعاشی غیر خطی میکرو تیرک های پیزوالکتریک در برهمکنش با نانو ذرات کروی

نوع مقاله: پژوهشی

نویسندگان

دانشگاه آزد واحد شهرکرد

چکیده

امروزه میکرو تیرکهای پیزوالکتریک بواسطه داشتن ساختاری انعطاف پذیر، حساسیت بالا به نیروهای مولکولی و اتمی و همچنین پاسخ دهی بسیار سریع بطور گسترده ای در میکروسکوپ های نیروی اتمی، اصطکاکی، اسکن حرارتی و همچنین اندازه گیری بیوجرمی مورد توجه قرارگرفته اند. با توجه به جابجای های کوچک این نوع میکرو تیرکها، آنالیز ارتعاشی کامل و مطالعه چگونگی رفتار آنها می تواند، نقشی کلیدی در دقت اندازه گیری های آنها و همچنین طراحی بهینه شان داشته باشد. بنابراین در این مقاله ابتدا معادله دیفرانسیل حاکم بر حرکت میکرو تیرک پیزوالکتریک با در نظر ناپیوستگی های هندسی، به کمک روش حل عددی Runge-Kutta مبتنی بر مدل تیر ناپیوسته و همچنین روش المان محدود حل می شود. سپس به منظور تعیین چگونگی تاثیر هر یک از پارامترهای هندسی میکرو تیرک بر پارامترهای اصلی حرکت ارتعاشی، آنالیز حساسیت انجام می شود. آنالیز حساسیت به کمک روش Sobol که مبتنی بر واریانس داده های خروجی است، صورت می پذیرد. نتایج نشان می دهد که مدل تیر ناپیوسته و همچنین روش المان محدود از دقت قابل قبولی در محاسبه فرکانس طبیعی و دامنه تشدید این نوع میکرو تیرک برخوردار است. نتایج آنالیز حسایت نیز مشخص می کنند که مد اول حرکت ارتعاشی میکرو تیرک مناسب ترین مد جهت توپوگرافی سطح و نانو ذره می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Nonlinear Vibration Behavior of Piezoelectric Micro-Beam Interacting with Spherical Nano Particles

نویسندگان [English]

  • Reza Ghaderi
  • Mehdi Jahangiri
  • Amad Haghani
چکیده [English]

Today, piezoelectric micro-beams are widely used in atomic and friction force microscopies, thermal scanning microscopy, and biomass measurement due to their flexible structure, sensitivity to molecular and atomic forces, and very fast response. Due to the small displacements of these micro-beams, their complete vibrating analysis and studying their behavior can play a key role in their measurement precision and optimal design. For this reason, first the numerical Runge-Kutta method (based on the discontinuous beam model) as well as the finite element method was employed to solve the differential equation governing the piezoelectric micro-beams motion by considering geometrical discontinuities. Then, the sensitivity analysis was conducted to determine the effects of each micro-beams geometric parameter on the main parameters of the vibratory motion. The sensitivity analysis was conducted using Sobol method which is based on the output data variance. According to the obtained results, both the discontinuous cantilever model and the finite element model exhibited acceptable accuracy in calculating the natural frequency as well as the resonance amplitude of this type of micro-beams. Also, the results obtained from the sensitivity analysis showed that the first mode of the vibratory MC motion was the most suitable mode for nanoparticle surface topography.

کلیدواژه‌ها [English]

  • Nonlinear vibration
  • Piezoelectric Microcantilever
  • Nano Particle
  • finite element method
[1] Rebaud, S., Maniti, O., Girard-Egrot, A.P. (2014). “Tethered bilayer lipid membranes (tBLMs): Interest and applications for biological membrane investigations”, Biochimie, Vol. 107, pp. 135-142.

[2] Vigneswaran, N., Samsuri, F., Ranganathan, B. (2014). “Recent Advances in Nano Patterning and Nano Imprint Lithography for Biological Applications”, Procedia Engineering, Vol. 97, pp. 1387-1398.

[3] Muthukumar,T., Prabhavathi, S., Chamundeeswari, M., Sastry T.P. (2014). “Bio-modified carbon nanoparticles loaded with methotrexate possible carrier for anticancer drug delivery”, Materials Science and Engineering: C, Vol. 36(1), pp. 14-19.

[4] Moradi, Z., Atta, M.M., (2014). “An investigation on the inhibitory action of benzazole derivatives as a consequence of sulfur atom induction”, Applied Surface Science, Vol. 37, pp. 657-665.

[5] Grayeli-Korpi, A-R., Savaloni, H., Habibi, M., (2013).“Corrosion inhibition of stainless steel type AISI 304 by Mn coating and subsequent annealing with flow of nitrogen at different temperatures”, Applied Surface Science, Vol. 276(1), pp. 269-275.

[6] Shokrieh, M.M., Hosseinkhani, M.R., Naimi-Jamal, M.R.  Tourani, H., (2013). “Nanoindentation and nanoscratch investigations on graphene-based nanocomposites”, Polymer Testing, Vol. 32(1), pp. 45-51.

[7] Moosapour, M., Hajabasi, M.A., Ehteshami, H., (2014). “Thermoelastic damping effect analysis in micro flexural resonator of atomic force microscopy”, Applied Mathematical Modelling, Vol. 38 (11-12), pp. 2716-2733.

[8] Kangarlou, H., Aghgonbad M.M., (2014)Incidence angle dependence on structural and optical properties of UHV deposited copper nano layers”, International Journal for Light and Electron Optics, Vol. 125(19), pp. 5532-5537.

[9]Beigi, M.H., Berenjian, J., Omran, O.L., Sadeghi Nik, A., Nikbin I.M., (2013). “An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete”, Materials & Design, Vol. 50, pp. 1019-1029.

[10] Jalili, N., Laxminarayana, K., (2004). “A Review of Atomic Force Microscopy Imaging Systems: Application to Molecular Metrology and Biological Sciences”. Mechatronic, Vol. 14, pp. 907-945.

[11] Riel, M.C.J.M., Bos, E.J.C., Homburg, F.G.A., (2014). “Analysis of the measurement sensitivity of multidimensional vibrating microprobes”, Measurement Science and Technology, Vol. 25(7), article id. 075008.

[12] Delnavaz, A., Mahmoodi, S.N., Jalili, N., Zohoor, H. (2010). “Linear and Non-Linear Vibration and Frequency Response Analyses of Microcantilevers Subjected to Tip–Sample Interaction”. International Journal of Non-Linear Mechanics,Vol. 45, 176-185.

[13] Wolf, K., Gottlieb, O. (2002). ‘‘Nonlinear Dynamics of a Noncontacting Atomic Force Microscope Cantilever Actuated by a Piezoelectric Layer’’. Journal of Applied Physics,Vol. 91(7), pp. 4701–4709.

[14] Fung, R.F. Huang, S.C. (2001). ‘‘Dynamic Modeling and Vibration Analysis of the Atomic Force Microscope’’. ASME Journal of Vibration and Acoustics,Vol. 123, pp. 502–509.

[15] Mahmoodi, S.N., Jalili, N., Ahmadian, M. (2010). ‘‘Subharmonics analysis of nonlinear flexural vibrations of piezoelectrically actuated microcantilevers’’. Nonlinear Dynamics,Vol. 59, pp. 397–409.

[16] Salehi-Khojin, A., Bashash, S., Jalili, N.(2008).“Modeling and Experimental VibrationAnalysis of Nanomechanical CantileverActive Probes”. Micromechanics and Microengineering. Vol. 18, 085008 (11pp)

[17]Ghaderi, R., Nejat, A. (2014). “Nonlinear Mathematical Modeling of Vibrating Motion of Nanomechanical Cantilever Active Probe”. Latin American Journal of Solids and Structures. Vol. 11, pp. 369-385.

[18] Saltelli, K., Chan, E., Scott, E.M. (2000).“Sensitivity Analysis”. Wiley, New York.

[19] Korayem H., Ghaderi R. (2014).“Sensitivity Analysis of Nonlinear Vibration of AFM Piezoelectric Microcantilever in Liquid”, International Journal of Mechanics and Materials in Design.Vol. 10(2),pp. 121–131.

[20] Moosapour, M., Hajabasi, M.A., Ehteshami, H. (2012).“Frequency and Sensitivity Analysis of Atomic Force Microscope (AFM) Cantilever Considering Coupled Flexural–Torsional Vibrations”. Digest Journal of Nanotechnology and Biotechnology Vol. 7(3), pp. 1103–1115.

[21] Korayem, M.H., Zakeri, M., Aslzaeem, M.M. (2011).“Sensitivity Analysis of the Nanoparticles on Substrates Using the Atomic Force Microscope with Rectangular and V-shaped Cantilevers”. Micro and Nano Letters, Vol. 6(8), pp. 586–591.

[22] Lee, H.W., Chang, W.J. (2011).“Sensitivity of V-shaped Atomic ForceMicroscope Cantilevers Based on a Modified Couple StressTheory”. Microelectronics Engineering, Vol. 88(11), pp. 3214–3218.

[23] Sitti, M. (2000).“Controlled Pushing of Nanoparticles: Modeling and Experiments”. IEEE/ASME Transactions on Mechatronics, Vol. 5, pp. 199–211.

[24] Reddy, J.N.(1993).“An Introduction to the Finite Element Method”. McGraw- Hill, New York.