بهینه‌سازی عملیات انفجار با استفاده از روش ترکیبی عصبی-مورچگان (مطالعه موردی: معدن سنگ آهن دلکن)

نوع مقاله : پژوهشی

نویسندگان

دانشگاه تربیت مدرس

چکیده

در یک عملیات مطلوب انفجار، هدف اصلی تامین خردایش مناسب سنگ و جلوگیری از بروز پدیده‌های نامطلوب و ناخواسته ناشی از انفجار (لرزش زمین، پرتاب‌سنگ و عقب‌زدگی) است. بطور کلی عوامل تاثیرگذار بر عملیات انفجار را می‌توان به دو گروه پارامترهای قابل کنترل (الگوی انفجار) و پارامترهای غیر قابل کنترل (خصوصیات ژئومکانیکی توده‌سنگ) تقسیم بندی نمود. پارامترهای قابل کنترل در عملیات انفجار را می‌توان با استفاده از مدل‌های تجربی تعیین نمود. با توجه به تنوع مقادیر بدست آمده برای پارامترهای قابل کنترل از مدل‌های تجربی، باید از روش‌های با کارایی بالاتر استفاده نمود. دلیل عمده عدم حصول نتیجه مناسب از مدل‌های تجربی، دخیل بودن تعداد زیادی پارامتر در نتیجه حاصل از انفجار است. ترکیب روش‌های هوشمند و فرا ابتکاری در حل چنین مسائل پیچیده‌ای می‌تواند بسیار مفید باشد. در این تحقیق، که در آن معدن سنگ آهن دلکن به عنوان مطالعه موردی در نظر گرفته شده، پرتاب سنگ و عقب زدگی از عوارض ناخواسته انفجار می‌باشند. هدف از این تحقیق، ساخت یک مدل شبکه عصبی مصنوعی با قدرت پیش بینی بالا و سپس استفاده از الگوریتم مورچگان برای یافتن ترکیبی از داده‌های ورودی است به گونه‌ای که عوارض نامطلوب ناشی از انفجار، به کمترین مقدار ممکن برسد. پس از عملیات مدل ‌سازی، بهترین الگوی انفجاری با ضخامت بارسنگ 8/2 متر، فاصله ردیفی چال 3/3 متر، طول چال 2/10 متر، گل‌گذاری 5/1 متر و خرج ویژه 201 گرم بر تن انتخاب گردید. استفاده از الگوی فوق می‌تواند منجر به کاهش تقریبی 42 درصدی عقب زدگی و 62 درصدی پرتاب‌سنگ گردد.

کلیدواژه‌ها


عنوان مقاله [English]

OPTIMIZATION OF BLASTING OPERATION USING HYBRID NEURAL NETWORK-ANT COLONY (CASE STUDY: DELKAN IRON MINE)

نویسندگان [English]

  • a s
  • m m
  • j kh
tt
چکیده [English]

The main purpose of optimal blasting operation is suitable crushing and prevent undesirable and unwanted phenomena arising from the blasting (ground vibration, flyrock and backbreak). Generally, the parameters affecting the blasting operation divided into two main group controllable (blasting pattern) and uncontrollable (geomechanical properties of rocks) parameters. Controllable parameter can be determined using experimental models. Due to variety of obtained values for controllable parameters from experimental models, it is necessary to use methods with high efficiency. The main reason for not achieving good results in experimental models is engaging a large number of parameters, resulting from blasting. The combination of intelligent and mehta heuristic methods to solve suck problems can be useful. In this study, Delkan iron mine as a case study has a side effects of blasting like as flyrock and backbreak. The main purpose of this paper is making a artificial neural network model as a strong predictor and finding a combination of data using ant colony optimization to minimum the unwanted phenomena. After the Modeling the blast pattern Burden 2.8 m, spacing 3.3 m, hole length 10.2 m, stemming 1.5 m and powder factor is 201 gr/ton. Using this model can lead to a reduction of approximately 42 percent and 62 percent in flyrock and backbreak respectively.

کلیدواژه‌ها [English]

  • Blasting Pattern
  • Flyrock
  • Backbreak
  • Ant Colony Optimization
 
[1] Institute of Makers of Explosives (IME). (1997), "Glossary of commercial explosive industry terms", safety Publication, No. 12, pp. 16. Washington DC: Institute of Makers of Explosives.
[2] Rustan, A. (1998), "Rock Blasting Terms and Symbols", A.A Balkema.
[3] Bajpayee, T.S., Rehak, T.R., Mowrey, G.L, Ingram, D.K. (2000), "A summary of fatal accidents due to flyrock and lack of blast area security in surface mining, 1989–1999". In: Proceedings of the 27th Annual conference On Explosives and Blasting Technique, vol. I. International Society of Explosives Engineers, Cleveland, USA.
[4] Fletcher, L.R; D’Andrea, D.V. (1986),"Control of flyrock in blasting". Proceedings of the 12th Annual Conference on Explosives and Blasting Technique. International Society of Explosives Engineers, Cleveland, pp. 167–177.
[5] Rehak, T.R, Bajpayee, T.S, Mowrey, G.L, Ingram, D.K. (2001),"Flyrock issues in blasting”. Proceedings of the 27th Annual Conference on Explosives and Blasting Technique, vol. I. International Society of Explosives Engineers Cleveland, pp. 165–175.
[6] Shea, C.W; Clark, D, "Avoiding tragedy: lessons to be learned from a flyrock fatality". Coal Age 103 (2), pp. 51–54.
[7] Siskind, D.E, Kopp, J.W. (1995), "Blasting accidents in mines" a 16 year summary. Proceedings of the 21st Annual Conference on Explosives and Blasting Technique. International Society of Explosives Engineers, Cleveland, pp. 224–239.
[8] Massey J.B., Siu K.L. (2003), "Investigation of flyrock incident at Clearwater Bay Road on 6 June”, Civ Eng Dept, Govt Hong Kong Special Admin Region, Hong Kong, p. 49.
[9] Gustafsson R. (1973), "Swedish Blasting Technique and Mining SPI", Gothenburg, Sweden.
[10] Monjezi M., Amini khoshalan H., Yazdian Varjani A. (2011), "Optimization of open pit blast parameters using genetic Algorithm", Int. J. Rock Mech. Min. Sci. 48, 864–869.
[11] Rezaei M., Monjezi M., Yazdian Varjani A. (2011), "Development of a fuzzy model to predict flyrock in surface mining", Saf. Sci. 49, 298–305.
[12] Monjezi M., Bahrami A., Yazdian Varjani A. (2010), "Simultaneous prediction of fragmentation and flyrock in blasting operation using artificial neural networks", Int. J. Rock Mech. Min. Sci. 47, 476–480.
[13] Monjezi M., Bahrami A., Varjani A.Y., Sayadi A.R. (2011), "Prediction and controlling of flyrock in blasting operation using artificial neural network", Arab. J. Geosci.4, 421–425.
[14] Konya C.J. (2003), "Rock Blasting and Overbreak Control ". 2nd ed. Washington, DC: US Department of Transportation, Federal Highway Administration.
[15] Gates W., Ortiz L.T., Florez R.M. (2005), "Analysis of Rockfall and Blasting Backbreak Problems". In: Proceedings of the 40th U.S. symposium on rock mechanics. Alexandria, VA: American Rock Mechanics Association, 671–80.
[16] Sayadi A., Monjezi M., Talebi N., Khandelwal M. (2013), "A comparative study on the application of various artificial neural networks to simultaneous prediction of rock fragmentation and backbreak", Journal of Rock Mechanics and Geotechnical Engineering 5, 318–324.
[17] Esmaeili M., Osanloo M., Rashidinejad F., Bazzazi A.A., Taji M. (2012), "Multiple regression, ANN and ANFIS models for Prediction of Backbreak in the Open pit Blasting", Eng. Comput. 1–10.
[18] Lundborg N. (1974), "The Hazards of Fly Rock in Rock Blasting", Report DS1974, Swedish Detonic Res Found (SveDeFo), p. 12.
 [19] Roth J.A. (1979) "A model for the determination of flyrock range as a function of shot condition", US Dept Commerce, NTIS Rep No PB81222358, p. 61.
[20] Hustrulid W.A (1999), "Blasting Principles for Open Pit Mining", Volume 1: General Design Concepts, AA Balkema.
[21] Grima, A., & Babuska, R. (1999), "Fuzzy model for the prediction of unconfined compressive strength of rock samples", International Journal of Rock Mechanics and Mining Sciences, 36(3), 339–349.
[22] Khandelwal M., Roy M.P., Singh P.K. (2004), "Application of artificial neural network in mining industry", Ind Min Eng J, 43:19–23.
[23] Finnie G.J. (1999), "Using neural networks to discriminate between genuine and spurious seismic events in mines", Pure Appl Geophys; 154:41–56.
[24] Monjezi M., Dehghani H. (2008), "Evaluation of effect of blasting pattern parameters on flyrock using neural networks", International Journal of Rock Mechanics and Mining Sciences, 45, 1446–1453.
[25] Hecker F.T., Stanke M., Becker T., Hitzmann B. (2014), "Application of a modified ga, (ACO) and a random search procedure to solve the production scheduling of a case study bakery", Expert Systems with Applications, 41(13), 5882–5891.
[26] Valdez F., Melin P., Castillo O. (2014), "A survey on nature-inspired optimization Algorithms with fuzzy logic for dynamic parameter adaptation", Expert Systems with Applications, 41(14), 6459–6466.
[27] "گزارش زمین شناسی معدن سنگ آهن دلکن"، (1380).
[28] McCulloch W.S, Pitts W. (1943), "A logical calculus of the ideas immanent in nervous activity", Bulletin Math. Biophys.5, 115-133.
[29] Poulton M.M. (2002), "Neural networks as an intelligence amplification tool": a review of applications. J Geophys, 67(3), 979–93.
[30] Baheer I. (2000), "Selection of methodology for modeling hysteresis behavior of soils using neural networks", Journal of Computer Aided Civil Infrastructure Engineering 5(6): 445– 63.
[31] Demuth H., Beale M. (2002) “Neural network toolbox for use with MATLAB”, User’s guide version 4.
[32] Negnevitsky M. (2002) “Artificial intelligence: a guide to intelligent systems”, England: Addison-Wesley.
 
[33] مطیع قادر، لطفی، اسفهلان، "مروری بر برخی از روش‌های بهینه‌سازی هوشمند"، (1389).