مدلسازی ریاضی و شبکه عصبی انتقال جرم در غشاهای مایع آمین گلایکول برای جداسازی دی اکسید کربن از هوا

نوع مقاله: مقاله شیمی

نویسندگان

دانشکده مهندسی شیمی نفت و گاز دانشگاه سمنان

چکیده

هدف این پژوهش، مقایسه عملکرد شبکه عصبی مصنوعی و مدل ریاضی انتقال جرم در پیش بینی غلظت دی اکسید کربن در هوای خروجی از ماژول غشایی ساخته شده با استفاده از غشای مایع گلایکول آمین است. برای حل مسئله با شبکه عصبی از توابع خط فرمان، داده­های مسئله شامل بردارهای ورودی و هدف در فضای کاری نرم افزار مطلب بارگذاری شده و یک شبکه پیش خور با تابع انتقال تانژانت-سیگموئید در لایه­های مخفی و تابع انتقال خطی در لایه خروجی استفاده شد. سپس شبکه آموزش داده شده و از الگوریتم لونبرگ-مارکوارت به عنوان تابع آموزش استفاده شد. در این کار از تعداد 74 داده ورودی شامل فشار هوای ورودی، شدت جریان هوای ورودی و میزان بازیابی دی اکسید کربن در طول فرآیند استفاده شد. داده هدف هم کسر مولی دی اکسید کربن در هوای خروجی بود. داده­های تجربی مورد استفاده در سه بخش به صورت 70 درصد داده­ها برای آموزش، 15 درصد برای اعتبار سنجی و 15 درصد به تست شبکه اختصاص یافت. تعداد نورون­های بهینه لایه مخفی شبکه نیز با استفاده از سعی و خطا محاسبه شده و با 4 نورون در لایه مخفی، بهترین عملکرد شبکه بدست آمد. همچنین با استفاده از بهترین مدل موجود در پیش­بینی انتقال جرم غشاهای مایع، میزان دی اکسید کربن عبوری از غشا مدل­سازی شد که رفتاری نمایی را از خود نشان داد. نتایج حاصل از مدل و شبکه عصبی به صورت جداگانه با نتایج تجربی مقایسه گردید و نشان داده شد که شبکه­های عصبی توانایی بالایی در پیش بینی مقادیر دارند. مقدار R-Value برای مدل ریاضی انتقال جرم برابر با 9839/0 بدست آمد. همچنین، این مقدار برای آموزش شبکه برابر با 9899/0، اعتبار سنجی شبکه 9910/0، تست داده ها 9975/0 و در حالت کلی برابر با 9899/0 شد که نشان دهنده تقریب بسیار خوب داده­های تجربی با نتایج پیش بینی شده توسط شبکه عصبی است.

کلیدواژه‌ها


عنوان مقاله [English]

ANN and Mathematical Mass Transfer Modeling of Glycol Amin Liquid Membranes for Separation of Carbon Dioxide from the Air

نویسندگان [English]

  • mohsen mehdipourghazi
  • Mohammadreza Moayyedi
چکیده [English]

Aim of this investigation is comparison of mass transfer artificial neural network (ANN) and mathematical model to prediction of carbon dioxide concentration in the exhaust air from the constructed module using glycol-amine liquid membrane. For solving of problem with ANN, command prompt function in Mathlab software was used with following instruction. First, input vector and targets are loaded in Mathlab current directory and a feed-forward tangent sigmoid transfer function in hidden layers and a linear transfer function in output layer was used. Then, the network was trained and Levenberg–Marquardt algorithm was used as training function. For this purpose, 74 input data inclusive input air pressure, input air flow rate, recovery value of CO2 in process was used. The CO2 mole fraction in output air was selected as target. Experimental data was divided in three sectors: 70% for training data, 15% for validation data and 15% for testing network. The optimum number of neurons in the hidden layer network obtained with using try and error method and the best performance of network achieved with four neurons in the hidden layer. Also, the best available models was used to predict mass transfer in liquid membranes, and exponential behavior was seen in modeling of permeating CO2 from membrane. The results of the ANN model were compared with the experimental results and this results were shown that the neural network has great ability to predict values. R-Value for mathematical model obtained 0.9839. Also, R-Value for network training, validation and testing was 0.9899, 0.9910 and 0.9975, respectively. Also, overalls R-Value was 0.9899 that proved a very good validation.  

کلیدواژه‌ها [English]

  • Di-ethylene Glycol
  • Tri-ethylene Glycol
  • Liquid membrane
  • Carbon dioxide
  • Mass transfer modeling
  • Artificial Neural Network
[1] کاغذچی، ط.، تخت روانچی، م.، حیدری، ع.ا.، کارگری، ع. (1388) "کاربرد غشاء مایع در فرایندهای جداسازی"؛ نشریه علوم و مهندسی جداسازی، شماره اول، ، صفحات 81 تا 89.
[2] Tabe Mohammadi, A. (1999).  “A review of the application of membrane separation technology in natural gas treatment”, Separation Science and Technology, Vol. 34, pp. 2095-2111.
[3] Shahsavand, A., Pourafshari Chenar, M. (2007). “Neural networks modeling of hollow fiber membrane processes”, Journal of Membrane Science, Vol. 297, Issues 1–2, pp. 59-73.
[4] Curcio, S., Calabrò, V., Iorio, G. (2006). “Reduction and control of flux decline in cross-flow membrane processes modeled by artificial neural networks”, Journal of Membrane Science, Vol. 286, Issues 1–2, pp. 125-132.
[5] Tan, M., He, G., Nie, F., Zhang, L., Hu, L. (2014). “Optimization of ultrafiltration membrane fabrication using backpropagation neural network and genetic algorithm”, Journal of the Taiwan Institute of Chemical Engineers, Vol. 45, Issue 1, pp. 68-75.
[6] Rostamizadeh, M., Hashemi Rizi, M. (2012). “Predicting gas flux in silicalitezeolite membrane using artificial neural networks”, Journal of Membrane Science, Vol. 403–404, Pp. 146-151.
[7] Chakraborty, M., Bhattacharya, C., Dutta, S. (2003). “Studies on the applicability of artificial neural network (ANN) in emulsion liquid membranes”, Journal of Membrane Science, Vol. 220, Issues 1–2, pp. 155-164.
[8] Shokrian, M., Sadrzadeh, M., Mohammadi, T. (2010). “C3H8 separation from CH4 and H2 using a synthesized PDMS membrane: Experimental and neural network modeling”, Journal of Membrane Science, Vol. 346, Issue 1, Pp. 59-70.
[9] Guadix, A., Zapata, J., Almecija, M., Guadix, E. (2010). “Predicting the flux decline in milk cross-flow ceramic ultrafiltration by artificial neural networks, Desalination, Vol. 250, Issue 3, pp. 1118-1120.
[10] Niemi, H., Bulsari, A., Palosaari, S. (1995). “Simulation of membrane separation by neural networks”, Journal of Membrane Science, Vol. 102, pp. 185-191.
[11] Curcio, S., Scilingo, G., Calabrò, V., Iorio, G. (2005). “Ultrafiltration of BSA in pulsating conditions: an artificial neural networks approach”, Journal of Membrane Science, Vol. 246, Issue 2, pp. 235-247.
[12] Mohammadi, T., Rezakazemi, M. (2013). “Gas sorption in H2-selective mixed matrix membranes: Experimental and neural network modeling”, International Journal of Hydrogen Energy, Vol. 38, Issue 32, pp. 14035-14041.
[13] Aydiner, C., Demir, I., Yildiz, E. (2005). “Modeling of flux decline in crossflow microfiltration using neural networks: the case of phosphate removal“, Journal of Membrane Science, Vol. 248, Issues 1–2, pp. 53-62.
[14] Jindaratsamee, P., Ito, A., Shimoyama, Y. (2011). ” Amine/glycol liquid membranes for CO2 recovery form air”, Journal of Membrane Science, Vol. 385–386, pp. 171–176.
[15] U.S. Patent, 5,041,225 (1991).
[16] Li, J., Ito, A. (2008). “Dehumidification and humidification of air by surface-soaked liquid membrane module with triethylene glycol”, Journal of Membrane Science, Vol. 325, pp. 1007–1012.
[17] Moradi, M., Zulkernine, M., (2004). “A neural network based system for intrusion detection and classification of attacks”, Proceeding of the 2004 IEEE International Conference on Advances in Intelligent Systems–Theory and Applications, Luxembourg- Kirchberg, Luxembourg, IEEE Press, 2004, November, 15–18.
[18] Rufford T.E., Smart, S., Watson, G. Y., Graham, F., Boxall, J., Diniz J. May, E. (2012) “The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies”, Journal of Petroleum Science and Engineering, Vol. 94-95, pp. 123–154.