برآورد ارزش اقتصادی بلوک استخراجی برای طراحی پیشروی ها در معادن روباز، با در نظر گرفتن عدم قطعیت عیار، نمونۀ مطالعاتی: معدن سنگ آهن چادرملو

نوع مقاله: پژوهشی

نویسندگان

1 دانشکده مهندسی صنایع، دانشگاه کاشان

2 دانشجوی د کتری دانشکده مهندسی معدن، دانشگاه کاشان

3 دانشکده مهندسی معدن، دانشگاه یزد

چکیده

یکی از پارامترهای مؤثر در طراحی معادن روباز، پراکندگی داده‌ها و عدم قطعیت آنها در برآورد ارزش اقتصادی بلوک‌های استخراجی است. از آنجا که هدف از هر فعالیت اقتصادی دستیابی به سود حداکثر می‌باشد، عدم قطعیت به عنوان یک ارزش منفی، هم ارز تحمیل هزینه‌ قلمداد می‌شود بطوریکه سایر پارامترهای معدن‌کاری را تحت تاثیر خود قرار می‌دهد. در این مقاله به‌منظور بررسی تأثیر عدم قطعیت عیار در طراحی پیشروی‌های معدن چادرملو ابتدا الگوریتم ابتکاری غلام‌نژاد (2005)، تشریح شده و سپس با تصحیح این رابطه پارامتر فاصله‌داری عیار میانگین هر بلوک از عیار حد معدنکاری در روابط اقتصادی برآورد ارزش اقتصادی بلوک وارد شده است. بطوریکه علاوه بر در نظر داشتن عدم قطعیت عیار بعنوان یک پارامتر منفی، ارزش اقتصادی بلوک‌ها به شکل منطقی‌تر محاسبه گردد. در ادامه با استفاده از نرم افزار PLP و بر پایۀ محاسبات مخروط شناور سه‌بعدی، نتایج برآوردهای اقتصادی ارزش خالص کاواک معدن محاسبه و دو دسته طراحی پیشروی برای کاواک نهایی معدن پیشنهاد شده است. بر اساس نتایج این مقاله برای سطوح اطمینان بالاتر از 81 درصد یک دسته از پیشروی‌ها و برای مقادیر اطمینان کمتر از آن دسته‌ای دیگر طراحی و پیشنهاد می‌شود. نتایج این تحقیق نشان می‌دهد که طراحی کاواک معدن با استفاده از رابطۀ جدید، علاوه بر در نظر گرفتن تأثیر منفی پراکندگی‌داده‌ها در برآورد ارزش اقتصادی هر بلوک، تأثیر مثبت فاصله‌داری عیار میانگین بلوک از عیار حد معدنکاری را در محاسبات اقتصادی منظور کرده و پیشروی‌ها و ارزش اقتصادی کاواک نهایی را ارتقاء می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Desining of push backs in Chadormalu Iron Mine considering the Grade Uncertinty

نویسندگان [English]

  • hadi mokhtari 1
  • moein bahadori 2
  • javad gholamnezhad 3
1 kashan university
2 kashan kashan
3 yazd university
چکیده [English]

The scattering and uncertainty of the Ore grades data, are the important parameters in the design of open pit mines, as they have considerable effect in estimating the economic value of the extraction process. Because the purpose of any economic activity is to achieve maximum benefit, the uncertainty as a negative value, which is considered as equivalent costs, have negative effect on the other economic parameters in mining operations. In this paper, to investigating the impact of grades uncertainty on the push-backs designing of Chadormalu Iron Mine, the Gholamnejad Heuristic algorithm (2005) is described at first, then considering the difference between the mean grades in the each block to the mining cut-off grade, the algorithm is corrected and a new economic relation, proposed. In the new relationship, economic value of the the blocks can estimated more logically. Then, using a three-dimensional floating cone in the PLP macro, the results of economic calculations for the net values, shows the two major designs for the mine cavity. Based on these results, for certainty up to 81 percent the the cavity has single set of designs, and from 81 to 100 percent of certainty another set of mining advanced planing is achived. The results indicate that the mine cavity design using the new relationship, considering the difference of the average grade of the block to the mining cut-off grade, In addition to the impact of scattering of the data, have positive impact on the economic calculations and can estimate values more real.

کلیدواژه‌ها [English]

  • Pushbacks designing
  • Chadormalu Iron Mine
  • PLP macro
  • grade uncertainty

    

[1]   Smith, M. L., (1998). Optimization short-term production schedules in surface mining: Integrating mine modeling software with AMLP/CPLEX. International journal of surface mining, reclamation and environmental, 149-155.
[2]   Wilke, F. L., & Reimer, T., (1979). Optimizing the short-term production schedule for an open-pit iron ore mining system. Computer methods for the 80’s in the mineral industry. society of mining engineers of A.I.M.E.
[3]   Johnson, T. B., (1969). Optimum Production Scheduling. Proceedings. 8th International Symposium on Computers and Operations research (pp. 539-562). Salt Lake City: Utah.
[4]   Williams, C. E., (1974). Computerized year-by- year open pit mine scheduling. Society of Mining Engineers, AIME, Transactions.
[5]   Gershon, M. E., (1987). An open pit production scheduler: algorithm and implementation. Mining Engineering, (pp. 793-796).
[6]   Elevli, B., (1995). Open pit mine design and extraction sequencing by use of OR and AI concept. International journal of surface mining, reclamation and environmental, (pp. 149-153).
[7]   Dagdelen, K., & Johnson, T. B., (1986). Optimum Open Pit Mine Production Scheduling by Lagrangian Parametrization. Proceeding of the 19th International Symposium on the Application of Computers and Operations Research in the Mineral Industry (pp. 127-142). Pennsylvania: Pennsylvania State University.
[8]   Froyland, G., Menabde, M., Stone, P., & Hodson, D., (2004). The value of additional drilling to open pit mining projects, in: Orebody Modelling and Strategic Mine Planning-Uncertainty and Risk Management. Perth: The Australian Institute of Mining and Metallurgy.
[9]   Johnson, T. B., & Barnes, J., (1988). Application of Maximal Flow Algorithm to Ultimate Pit Design. Engineering Design: Better Results through Operations Research Methods, (pp. 518-531). North Holland.
[10]                       Lerchs, H., & Grossman, F., (1965). Optimum design of open-pit mines. Transaction CIM, 58, 47-54.
[11]                       Dagdelen, K., (2000). Open pit optimization- Strategies for improving economics of mining projects through mine planning. Application Computers for Mining Industry, 125-129.
[12]                         Wang, Q. and Sevim, H., (1992). Enhanced production planning in open pit mining through intelligent dynamic search. In Y. Kim, editor, 23rd APCOM, Society for Mining, Metallurgy, and Exploration, chapter 46. (pp. 461–471). Inc., Littleton, CO.
[13]                       Tolwinski, B., (1998). Scheduling production for open pit mines. APCOM’98, Institute of mining and metallurgy, (pp. 651-662). London, United Kingdom.
[14]                       Tolwinski, B., & Golosinski, T. S., (1995). Long term open pit scheduler. Proceeding of international symposium on Mine Planning and Equipment Selection (pp. 256-262). Balkema, Rotterdam.
[15]                       Steffan , O. H., (1997). Planning of open pit mines on a risk basis. The journal of the South African institute of mining and metallurgy, 47-56.
[16]                       Fytas, K., & Calder, P. N., (1986). A computerized model of open pit short and long range production scheduling. Proceeding of Application of Computers and Operations Research in the Mineral Industry, (pp. 109-119).
[17]                       Bernabe, D., & Dagdelen, K., (2002). A comprehensive analysis of open pit mine scheduling techniques for strategic mine planning of the TINTAYA copper mine in Peru. In SME Annual meeting (pp. 25-27). Arizona, Preprint 02-125.: Phpenix.
[18]                       Dimitrakopoulos, R., & Ramazan, S., (2003). Managing risk and waste mining in long-term production scheduling of open pit mine. SME Annual meeting & exhibit, (pp. 03-151). Cincinnati Ohio.
[19]                       Johnson, T. B., Dagdelen, K., & Ramazan, S., (2002). Open pit mine scheduling based on fundamental tree algorithm. Proceeding of the 30th International Symposium on the Application of Computers and Operations Research in the Mineral Industry (pp. 147-159). SME: Littleton.
[20]                       غلام‏نژاد، ج.، (1385). رسالۀ دکتری، طراحی پیشروی‏ها با عدم قطعیت عیاری. تهران: دانشگاه صنعتی امیرکبیر.
[21]                       حسنی پاک، ع. ا.، (١٣٧٩). پروژه ارزیابی مجدد معدن سنگ آهن چادرملو، گزارش فاز اول: برنامه‌ریزی بلند مدت در توده شمالی. یزد، اردکان: شرکت معدنی و صنعتی چادرملو.
[22]                       Dimitrakopoulos, R., Farrelly, T., & Gody, M., (2002). Moving forward from traditional optimization: grade uncertainty and risk effects in open pit design. Transaction of the IMM, A82-A88.
[23]                       Menabde, M., Froyland, G., Stone, P., and Yeates, G. 2007. Mining schedule optimisation for conditionally simulated orebodies, in Proc. Orebody Modelling and Strategic Mine Planning Spectrum Series, 14, (ed. R. Dimitrakopoulos), 379-384, Burwood, The Australasian Institute of Mining and Metallurgy.
[24]                       Ramazan, S. and Dimitrakopoulos, R. (2013). Production scheduling with uncertain supply: A new solution to the open pit mining problem, Optimization and Engineering, 14(2), 361-380.
[25]                       Leite, A., and Dimitrakopoulos, R. (2014). Stochastic optimization of mine production scheduling with uncertain ore/metal/waste supply: application at a copper deposit, J. Min. Sci. Technol., In Press.
[26]                       زارع، ح.، (١٣٨٧). پروۀ کارشناسی ارشد، طراحی ماکروها برای تحلیل ریسک و طراحی کاواک معدن. یزد: دانشگاه یزد.